
Self-Coordination Mehanisms forWireless Community NetworksFrank A. Zdarsky, Ivan Martinovi, and Jens B. Shmittdiso | Distributed Computer Systems LabUniversity of Kaiserslautern, GermanyTehnial Report No. 339/05July 2005 (revised Jan. 2006)AbstratCo-hannel interferene and ontention at shared medium aess maysigni�antly redue the utilization of sare radio frequeny resoures anddegrade the performane of a CSMA/CA-based wireless LAN. While bothphenomena may be ontrolled within a single administrative domain byhoosing appropriate aess point installation sites and assigning operat-ing hannels intelligently, there is usually little that an be done againstinterferene by aess points from other nearby administrative domains.This problem beomes paramount in so-alled wireless ommunity net-works (based on wireless LAN tehnology), as eah aess point is oper-ated by a di�erent owner and an be viewed as a separate domain. Further,the situation is aggravated by the fat that wireless ommunity networksare not pre-planned but grow wildly and evolutionary. Until reently, theproblem of inter-domain ontention in wireless LANs has reeived littleattention. In this paper, we give a mathematial programming formula-tion of the minimum inter-domain ontention problem and present twotheoretial lower bounds on ontention. A spei�ally-tuned geneti algo-rithm is then introdued that an be used to �nd near-optimal solutionsin larger senarios and serves us as benhmark for the main ontributionof this paper: a distributed algorithm and protool for self-oordination ofaess points from di�erent domains based solely on knowledge about theimmediate neighborhood.1 Introdution1.1 Bakground and MotivationThe emergene of wireless ommunity networks as for example NYCwireless[2℄is a remarkable and growing phenomenon and provides the major motivationfor our work on self-oordination mehanisms in wireless networks (although it1



may be appliable to other senarios as well). Wireless ommunity networksare based on aess points whih are independently run by volunteers with theirown equipment. The ommon goal is to enable sharing of wireless Internetaess with other members of the ommunity, gradually growing the network toa large, ity-wide sale. The growth of suh networks is onsiderable, with e.g.about 150 aess point in the NYCwireless. This suess is fueled by the lowost of wireless LAN tehnology and by its relatively easy usage.Unlike mobile teleommuniation networks, wireless LANs (WLANs) aretypially deployed on a small sale and in a rather ad-ho manner. Publi orprivate organizations intending to over their premises with WLAN aess oftenmerely rely on expert knowledge and ommon best praties when planning theirnetworks or use one of the ommerially available WLAN planning tools thatallow a user to determine aess point (AP) installation sites with omparativelylow e�ort for in-situ measurements. Most single AP installations in privatehomes (whih are the basis for a wireless ommunity network) are not plannedat all.Improperly loated APs and a bad frequeny assignment frequently resultin o-hannel interferene and ontention due to the CSMA/CA random aessprotool of WLANs. Espeially in areas with a high density of APs from di�erentadministrative domains, e.g. student dormitories, multi-tenant o�e buildingset., the utilization of sare frequeny resoures and the performane of thewireless LAN aess network is usually low.Interfering APs under di�erent administrative ontrol are hard to irum-vent, espeially sine the number of available non-overlapping hannels is low(typially 3 in 802.11b/g, 12 in 802.11a, depending on regulations). The prob-lem might even beome worse, if the spatial density of wireless LANs inreases(as it does for wireless ommunity networks), if more vendors adopt proprietaryhannel bonding tehniques[23℄ to inrease the throughput of their produts,or if more produts that are not 802.11-friendly use the liense exempt ISMand U-NII frequeny bands. Furthermore, although radio hannels in 802.11aare non-overlapping, reeivers of many heaper wireless LAN adapters annotleanly �lter out single hannels. As a result they experiene interferene fromadjaent hannels as well.A solution to all these problem is to introdue oordination mehanismsbetween APs of di�erent administrative domains. While produts suh as wire-less swithes[4℄ and self-on�guring APs[3℄ are a step towards radio resouremanagement inside single administrative domains, the problem of inter-domainontention has only reently started to attrat the attention of the sienti�ommunity[21℄. In a wireless ommunity network a further step towards theself -oordination of a very large number of domains needs to be taken.Following up on some of our initial work on the problem of minimal inter-domain ontention in wireless LANs[27℄, in this paper we present a distributedalgorithm and protool for the self-oordination of APs from a potentially largenumber of di�erent administrative domains. We have taken a distributed, butloal approah using only regional knowledge, as this lends more naturally to theproblem of self-oordination between a large number of di�erent domains. Our2



algorithm urrently assumes ooperative behavior between APs partiipatingin the protool. It is therefore well suited for the use in wireless ommunitynetworks, where this ooperation is a preondition anyway and in whih theowners of APs often annot know all other owners on a personal level but mustrely on the self-organization of the wireless network.1.2 Related WorkSubstantial researh ontributions exist on the planning of mobile teleommu-niation networks. One aspet of planning in this ontext is the seletion ofinstallation sites from a set of available andidate sites (e.g. [16, 9℄). This anbe ombined with the on�guration of base stations, e.g. hoosing antenna typesand orientation, and transmission power [11℄. Often, the plaement problem hasmultiple, ompeting objetives, suh as maximizing overage, maximizing apa-ity, and minimizing installation ost. Channel assignment is another importantplanning aspet whih has been studied both for �xed and dynami assignments(e.g. [14, 15, 18℄). Di�erent heuristis suh as simulated annealing [11℄, genetialgorithms [9℄, and tabu searh [16℄ have been used for both of these aspets.Partially, the work on ellular networks an be applied in the ontext ofsingle-domain wireless LANs as well. For example, [12℄ formulated a overageplanning problem for outdoor wireless LANs, but did not onsider any peuliar-ities of wireless LANs, suh as arrier sensing or ontention, so that their resultsan be applied in other radio networks as well.In ontrast to this, [5℄ investigated the WLAN planning problem aountingfor the e�et of ontention introdued by the CSMA/CA mehanism. Theygive 0-1 hyperboli formulations and quadrati formulations for the problem ofmaximizing overall apaity with and without overing onstraints and for max-imizing fairness with respet to apaity. They only onsider a single-hannelsenario, but laim that their proposed formulation an be easily generalized tomultiple hannels.[19℄ formulated a hannel assignment problem for CSMA/CA-based net-works, onsidering the umulative o-hannel interferene from neighboring APsleading to a busy arrier sense signal. Their objetive is to minimize the max-imum hannel utilization experiened by an AP. The authors then proved thisproblem to be NP-omplete and proposed a heuristi, whih they applied totwo senarios with known optimal frequeny assignments (hexagonally shapedlattie of ells) and uniform, �xed-power setorized antennas.[17℄ provided an integer linear programming formulation, whih determines aplaement of APs and a hannel assignment that maximizes hannel utilizationin a single step. However in their formulation, APs within interferene rangehave to always operate on di�erent hannels, whih makes the problem unsolv-able for senarios with many nearby APs and only few available non-overlappinghannels.Finally, [20℄ proposed a method for joint AP plaement and hannel assign-ment whih permits o-hannel overlapping and aims at maximizing throughputand fairness among stations. 3



As we are interested in analyzing already deployed wireless LANs from dif-ferent domains, we do not onsider AP plaement and we also do not expetto be able to in�uene the hardware on�guration of APs. Instead, we fouson the dynamially adjustable aspets whih a�et ontention: transmissionpower, hannel seletion and assignments of STAs to APs. Our objetive is tominimize ontention experiened by APs and STAs by taking into aount bothdiret ontention via CSMA/CA's physial arrier sense as well as the virtualarrier sense of the RTS/CTS extension. Note that as a result of transmissionpower assignment an AP an be swithed o�, so that we also have some formof seletion from andidate sites, but it is not an objetive to keep the numberof ative sites small. Finally, we do not make any assumptions about the size,shape or overlap of o-hannel radio ells, as we expet all kinds of heterogeneityto our in our senario under study and typially not the traditional hexagonallattie.There has been some work on on-line radio resoure management for wirelessLANs whih is omplementary to our work in that our global optimizationalgorithm an be used as a benhmark for determining the e�etiveness of theproposed shemes in reduing ontention inside a domain or between domains:[10℄ desribed an arhiteture in whih intelligent swithes ontrol APs withina single administrative domain to provide dynami hannel assignment, dynamitransmit power ontrol and load sharing.[24℄ proposed an agent-based radio resoure management system in whihthe APs belonging to the same network ooperate with eah other to providefull overage for present STAs and perform load balaning between them.[21℄ suggest the use of a radio resoure broker that monitors tra� in theonneted wireless LANs of di�erent domains as well as the interferene betweenthese domains and then ompensates networks with high tra� but muh inter-ferene from other networks by assigning them more hannels and transmissionpower, whih it takes away from other domains. While being the most loselyrelated work to ours, this proposal relies on a entral omponent assuming arather low number of di�erent domains, i.e. it is not suited for a wireless om-munity network.1.3 Contributions and Paper StrutureIn our paper we pursue two questions: How muh and to whih level on-tention in an unplanned network of wireless APs an be redued by introduingoordination between these APs and how lose a distributed algorithm for self-oordination an get to this level. To this end we:
• propose mathematial programs for jointly determining the AP�STA as-soiations as well as the transmission power and hannel assignment pa-rameters for all nodes of a CSMA/CA-based wireless LAN senario thatminimizes the amount of ontention in the system both for operation withand without RTS/CTS extension (Setions 2.1 and 2.2, respetively),4



• present two theoretial lower bounds for the minimal ontention problemthat exploit di�erent levels of knowledge about the senario (Setion 3.1),
• introdue a geneti algorithm whih is spei�ally tuned for �nding near-optimal solutions also in larger searios (Setion 3.3),
• desribe a distributed algorithm and protool that allows APs to reon�g-ure the network within their neighborhood in order to redue ontention(Setion 4), and
• present some of our experimental results (Setion 5).Finally, we onlude our paper with a short summary and an outlook.2 Modeling the Minimal Contention ProblemIn this setion we provide mathematial programming formulations of the basiproblem we are addressing: the minimization of ontention in CSMA/CA-basedwireless networks. We distinguish two ases: a simpler model under the assump-tion of low tra� load and a more sophistiated model under high tra� loadwhih integrates the RTS/CTS mehanism.2.1 Networks with Low Tra� LoadsBefore a wireless station using CSMA/CA an start to transmit data, it needsto sense an idle hannel for a spei�ed amount of time (Distributed Inter FrameSpaing or DIFS in 802.11). Whether a hannel is idle or not is determined by aClear Channel Assessment (CCA) funtion of the physial layer. Depending onthe implementation and the hosen operation mode, the CCA would for exampleindiate a busy hannel when a ertain energy detetion threshold is exeeded(CCA Mode 1), when a valid signal from another station is deteted (CCA Mode4), or a ombination of both (CCA Mode 5)[25℄. In this paper we assume thatphysial arrier sense is solely based on detetion of valid signals from otherstations. The reason for this is that the default energy detetion threshold isusually muh higher than the signal level at whih transmissions from a singlestations an be deteted. Only in the rare ase that a station reeives simulta-neous transmissions from multiple o-hannel stations (i.e. when these stationssense an idle hannel both with physial and virtual arrier sense) would CCAMode 1 detet a busy medium when CCA Mode 4 does not. Furthermore, theenergy detetion threshold is usually only adjustable in higher-pried equipment.The signal strength above whih a station is able to detet valid transmissionsfrom other stations is typially muh lower than the signal strength requiredfor reeiving transmissions at a desired data rate. Thus, a station whih isfarther away from a sending station than the intended reeiver might still berestrained from sending to any other station, even though its transmission mightbe unproblemati. 5



As a �rst step, we will model a senario with wireless aess points andstations that use only simple CSMA/CA. Later we will extend the model forRTS/CTS operation.Let i denote a wireless node with i = 1, . . . , I + K, where I is the numberof aess points (APs) in the senario and K the number of stations (STAs).Nodes shall be ordered suh that i = 1, . . . , I for APs and i = I + 1, . . . , I + Kfor STAs. Eah node i an transmit with a transmission power xi ∈ R between
0 and a node-spei� maximum allowed power si. On the way from a sender ito a reeiver m, a signal experienes a path loss given by pim

1. A reeiving noderequires a minimum signal strength rm to be able to deode a frame transmittedat the desired data rate orretly. If a node i reeives a signal from another nodewith a power above or equal to li, its CCA will report the hannel as busy.APs and their assoiated STAs form a basi servie set (BSS). A BSS anoperate on one of J di�erent non-overlapping radio hannels, j = 1, . . . , J . yij isa binary variable indiating whether node i urrently uses hannel j or not. Wefurther de�ne a binary variable fim indiating whether a node i (whih mustbe a STA) is urrently assoiated to node m (an AP) and a helper variable
e

pc
im whih indiates whether node i is a potential ontender of node m. Withpotential ontender we mean that node m is lose enough to i that it an detet

i's arrier if both are operating on the same hannel. In summary, our �rstmodel takes as input
• si: the maximum transmission power of node i

si ∈ R, i = 1, . . . , I + K

• ri: the minimum reeption power requirement of node i

ri ∈ R, i = 1, . . . , I + K

• li: the minimum signal power for node i to detet the hannel as busy
li ∈ R, i = 1, . . . , I + K

• pim: the signal propagation loss from node i to node m

pi ∈ R, i = 1, . . . , I + K, m = 1, . . . , I + Kand the following deision variables:
• xi: the urrent transmission power of node i,

xi ∈ R, i = 1, . . . , I + K

• yij =

{

1 i� node i is set to hannel j

0 otherwise
yij ∈ {0, 1} , i = 1, . . . , I + K, j = 1, . . . , J

• fim =

{

1 i� AP i is responsible for STA m

0 otherwise
fim ∈ {0, 1} , i = 1, . . . , I, m = I + 1, . . . , I + K1Note that we assume dBm as the unit of signal strength. Due to its logarithmi sale,losses (negative values) in dB are atually added to the transmission power to alulate thereeived signal strength. 6



• e
pc
im =

{

1 i� node i is potential ontender of node m

0 otherwise
e

pc
im ∈ {0, 1} , i = 1, . . . , I + K, m = 1, . . . , I + KA valid solution of our optimization problem needs to satisfy several onstraints,whih we will disuss in detail.First of all, eah node's transmission power must be between zero and thenode-spei� maximum:

0 ≤ xi ≤ si, i = 1, . . . , I + K (1)All STAs have to reeive their minimum power requirement from the AP theyare assoiated to:
xi + pim ≥ fimrm, i = 1, . . . , I, m = I + 1, . . . , I + K (2)Likewise, all APs have to reeive their minimum power requirement from theSTAs in their BSS:
xm + pmi ≥ fimri, i = 1, . . . , I, m = I + 1, . . . , I + K (3)All STAs are assoiated to exatly one AP:

I
∑

i=1

fim = 1, m = I + 1, . . . , I + K (4)Eah AP and STA uses exatly one hannel:
J

∑

j=1

yij = 1, i = 1, . . . , I + K (5)All STAs use the hannel of the AP whih they are assoiated to:
yij − ymj − (1 − fim) ≤ 0, (6)

i = 1, . . . , I, m = I + 1, . . . , I + K, J = 1, . . . , JFinally, we fore e
pc
im to be 1 if nodes i and m are so lose to eah other, that

m detets the hannel busy if i urrently transmits on the same hannel (for
i 6= m, of ourse, sine nodes annot ontend for aess with themselves):

xi + pim ≤ lm + e
pc
imMim, Mim = si + pim − lm (7)

i = 1, . . . I + K, m = 1, . . . , I + K ∧ i 6= m

e
pc
ii = 0, i = 1, . . . , I + K (8)7



Considering that a node an only ontend for aess with another node whenboth are on the same hannel, we are able to alulate am, the number of nodesontending for aess with node m:
am =

I+K
∑

i=1

e
pc
im





J
∑

j=1

yijymj



 (9)Our objetive is then to minimize the amount of ontention experiened by thenodes in the system:
min

I+K
∑

m=1

am = min
I+K
∑

m=1

I+K
∑

i=1

e
pc
im





J
∑

j=1

yijymj



 (10)This optimization problem requires I2 + K2 + 3IK + (J + 1) (I + K) deisionvariables and I2+K2+(J + 4) IK +2I+3K onstraints and is unfortunately ofmultipliative form, whih makes it still di�ult to solve. In setion 3.2 we willshow how to make this problem solvable by transforming it into an equivalentlinear problem.2.2 Networks with High Tra� LoadsWhen tra� in the wireless network inreases, so does the number of ollisions oftransmission attempts. In wireless networks with high tra� loads, a mehanismalled RTS/CTS, �rst proposed as part of the MACA protool [13℄, is usually employed toinrease utilization.In CSMA/CA with RTS/CTS, when a node i wants to transmit data toa node m, it �rst sends a small Request To Send (RTS) frame ontaining thereeiver address and the duration of the transmission inluding the �nal ACK.Upon reeiving the RTS frame, m reponds with a Clear To Send (CTS) frame,whih ontains the remaining transmission duration as well. All other nodes(APs and STAs) whih an hear either the RTS or the CTS store the time duringwhih the medium is expeted to be busy in their loal network alloation vetor(NAV) timer and then defer aess until the transmission between i and m isover. Sine the spei�ed proedure of deferring aess is similar to the physialarrier sense desribed in the previous setion, this mehanism is alled virtualarrier sense.Ativating RTS/CTS has the advantage, that ollisions an in general onlyour on RTS transmissions. As RTS frames are omparatively small, the ol-lision probability is signi�antly redued. Furthermore RTS/CTS solves thehidden terminal problem, where two stations that annot hear eah other try tosend data to the same aess point simultaneously. As a drawbak, more sta-tions experiene ontention indiretly, as they are within arrier sense distaneof a node reeiving a transmission. 8



We are now going to extend the previous model for the ase of CSMA/CAnetworks using RTS/CTS. This is simple as the previous model already aountsfor alulating the number of diret ontenders for a given node m. There, adiret ontender was de�ned as a node whih, when it transmits, auses m todefer transmissions due to a positive physial arrier sense indiation, whihis equivalent to the e�et of the virtual arrier sense after reeption of a RTSframe. All we have to do further is to take into aount those ontenders i, whihinterfere with m's transmissions by being able to send RTS frames to at leastone node k whose CTS answers m an hear. We all i an indiret ontender of
m, if it is not a diret ontender at the same time, so that the sets of diret andindiret ontenders for a given node are disjoint. To indiate that a node is notpotential ontender of another node, we need to de�ne a new helper deisionvariable e

npc
im :

xi + pim ≥ lm − e
npc
im Mim, Mim = lm − pim (11)

i = 1, . . . I + K, m = 1, . . . , I + K ∧ i 6= m

e
npc
ii = 0, i = 1, . . . , I + K (12)We an now extend amwith the number of indiret ontenders, but have to takeinto onsideration that APs only send to STAs but not to other APs and vieversa. Furthermore, an AP that does not have STAs assigned should not beounted as an indiret ontender. On the other hand, if it has STAs, it shouldbe ounted exatly one, no matter how many STAs are assigned to it. This iswhy we introdue the step funtion σ (x). Our objetive funtion thus beomes:

min

I+K
∑

m=1

am,

am =

I+K
∑

i=1

e
pc
im
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∑

j=1

yijymj
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I
∑
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∑
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∑
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∑
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 (13)
σ (x) =

{

1 x > 0
0 x ≤ 0This model extension adds (I + K)2 deision variables and (I + K)2 onstraints.Note that e

pc
ik and e

pc
ki always have the same value as fik, sine a STA and theAP it is assoiated to need to be able to hear eah other. We an thereforesimply omit these variables in the objetive funtion.9



3 Lower Bounds for the MinimalContention Problem3.1 Theoretial Lower BoundsIn this setion, we derive theoretial lower bounds on the minimum ontention.The bounds are based on optimisti assumptions about possible ontention be-tween APs and STAs, i.e. a best-ase analysis for a given number of STAs andAPs is performed. In the following two bounds are presented: one independentof the radio range of APs and STAs and then a (better) one whih takes intoaount the radio range of APs and STAs.3.1.1 Radio-Range Independent Lower BoundAs above, let I denote the number of APs and K the number of STAs. Wemake the following two optimisti assumptions:1. APs (and their assoiated STAs) do not ontend with APs (and STAs) ofother basi servie sets.2. STAs assigned to a given AP do not ontend with eah other.The �rst assumption requires APs (and their assoiated STAs) to either bespaed far away enough from eah other or to use di�erent hannels. The seondassumption is optimisti in the spaing between STAs that are assoiated to thesame AP.Let ni denote the number of STAs assoiated to AP i. Under these assump-tions the overall ontention an be alulated as follows:
C =

I
∑

i=1

(2ni + ni(ni − 1)) =

I
∑

i=1

n2
i + niThis is due to the fat that an AP is in diret ontention with eah of itsassoiated STAs (and the other way around) and that eah STA is in indiretontention with eah other STA assoiated to the same AP. This ontention isminimal if the STAs are as uniformly distributed over the APs as possible:Proposition 1: C is minimal if ∀i, j ni + 1 ≥ nj .Proof: Assume C is minimal for a given assignment of STAs to APs but

∃i0, j0 with ni0 + 1 < nj0 . That means ∃k ≥ 2 with ni0 + k = nj0 . Hene, with
A =

∑I

i=1,i6=i0,i6=j0
n2

i + ni

C = A + n2
i0

+ (ni0 + k)
2

+ ni0 + ni0 + k

= A + 2n2
i0

+ 2ni0k + k2 + 2ni0 + k

> A + 2n2
i0

+ 2ni0k + k2 − 2(k − 1) + 2ni0 + k

= A + (ni0 + 1)
2

+ (nj0 − 1)
2

+ (ni0 + 1) + (nj0 − 1)10



This ontradits the assumption that C is minimal for this distribution, as itan be improved by reassigning STAs to APs and thus the proposition must beorret.We therefore make the further optimisti assumption, that the APs ahievea perfet load balaning with respet to their assigned STAs (modulo 1) to �nda lower bound on ontention for a given number of APs and STAs.That means the lower bound is given by
C = K + m(n + 1) + (I − m)n + mn(n + 1) + (I − m)n(n − 1) (14)where n = K div I is the number of STAs per AP (possibly plus one) and

m = k mod I is the number of APs with one STA more than others.Note that this bound makes very optimisti assumptions on the spatial dis-tribution of nodes and assumes enough hannels to prevent ontention betweenbasi servie sets. Hene, in some atual senarios it an be a very loose lowerbound.3.1.2 Radio-Range Dependent Lower BoundFor this seond bound, some more information besides the number of STAs andAPs is required. In partiular, now also the feasible assoiations of STAs toAPs due to radio reahability is taken into aount. If we have this informationwe an apture situations where a perfet load balaning is not possible andinrease the lower bound aordingly.Let us de�ne a radio range onstrained load balaned assignment of STA toAPs as follows:De�nition: An assignment of STAs to APs is alled radio range onstrainedload balaned i� for all AP i0 and i1 with ni0 > ni1 + 1 it applies that if a STA
j ∈ CSTA

i0
∧ j ∈ CSTA

i1
then j must be assigned to AP i1.Equipped with this de�nition the following proposition parallels Proposition1 from the preeding setion:Proposition 2: The minimal ontention under optimisti assumptions isahieved by the radio range onstrained load balaned assignment of STAs toAPs.Proof: The proof is a straightforward extension of the one for Proposition 1taking into aount the further restritions due to radio range onstraints.An algorithm to ompute the radio range onstrained load balaned assign-ment of STAs to APs, whih hene ahieves the lower bound on ontention(under the optimisti assumptions of no inter-BSS ontention and no intra-BSSontention between STAs), is given as Algorithm 1.3.2 Exat Lower BoundsThe problem presented in Setion 2.2 has a polynominal struture, as the termsof the objetive funtion are produts of three and more variables. The binarynature of variables allows us to adopt the tehnique from [7℄ to derive an equiv-alent linear model at the ost of additional deision variables and onstraints.11



Algorithm 1Computation of Radio Range Constrained Load BalaningParameters
I: number of APs
K: number of STAs
CSTA

i : set of STAs whih an be overed by AP i at its maximum signalstrength, i.e.
CSTA

i = {m ∈ {I + 1, ..., I + K} : si + pim ≥ rm}
CAP

m : set of APs of whih eah overs STA m at its maximum signal strength,i.e.
CAP

m = {i ∈ {1, ..., I} : si + pim ≥ rm}Variables
MSTA: set of STAs
MAP , MEXCL: sets of APs
ni: number of STAs assoiated to AP iAlgorithm
MSTA = {I + 1, ..., I + K} ;
MEXCL = ∅;FOR i = 1 TO I: ni = 0;WHILE MSTA 6= ∅ DO

MAP = {1, ..., I} − MEXCL;WHILE MSTA 6= ∅ ∧ MAP 6= ∅ DO
i0 = arg mini∈MAP

∣

∣CSTA
i

∣

∣ ;IF ∣

∣CSTA
i0

∣

∣ 6= 0 THEN
m0 = arg minm∈CSTA

i0

∣

∣CAP
m

∣

∣ ;

ni0 = ni0 + 1;
MSTA = MSTA \ {m0} ;FOR i = 1 TO I: CSTA

i = CSTA
i \ {m0}ELSE

MEXCL = MEXCL ∪ {i0} ;
MAP = MAP \ {i0} ;

12



For every produt of binary variables we introdue a new variable and substituteit with a produt whih is then transformed to a new onstraint.We substitute edc
im := e

pc
imyijymj , eicAS

im := fike
pc
kme

npc
im yijykjymj , and eicSA

im :=
fike

pc
ime

npc
km yijykjymj by adding the following variables:

• edc
im =

{

1 i� node i is diret ontender of node m

0 otherwise
edc

im ∈ {0, 1} , i = 1, . . . , I + K, m = 1, . . . , I + K

• eicAS
im =

{

1 i� AP i is indiret ontender of node m

0 otherwise
eicAS

im ∈ {0, 1} , i = 1, . . . , I, m = 1, . . . , I + K

• eicSA
im =

{

1 i� STA i is indiret ontender of node m

0 otherwise
eicSA

im ∈ {0, 1} , i = I + 1, . . . , I + K, m = 1, . . . , I + KThe produts are then added as new onstraints:Fore edc
im to be 1 if node i is potential ontender of m and both use the samehannel

e
pc
im + yij + ymj − edc

im ≤ 2, (15)
i = 1, . . . , I + K, m = 1, . . . , I + K, j = 1, . . . , JFore eicAS

im to be 1 if AP i sends an RTS to its assoiated STA k and node man hear k's CTS, but not the original RTS
fik + e
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km + e

npc
im + yij + ykj + ymj − eicAS

im ≤ 5, (16)
i = 1, . . . , I, k = I + 1, . . . , I + K,

m = 1, . . . , I + K, j = 1, . . . , JFore eicSA
im to be 1 if STA i sends RTS to its AP k and node m an hear k'sCTS, but not the original RTS:
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im ≤ 5, (17)
i = I + 1, . . . , I + K, k = 1, . . . , I,

m = 1, . . . , I + K, j = 1, . . . , JFinally we obtain our new linear objetive funtion:
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This new formulation an now be solved with any mixed integer program solver.For our evaluations, we have used the open-soure software lp_solve[1℄. Dur-ing our initial testing we found out that we ould vastly improve the time thatlp_solve takes to �nd the optimal solution, by giving it a hint to use all avail-able hannels. We did this by adding the following additional onstraints:
I

∑

i=1

yij ≥ 1, j = 1, . . . , J (18)Note that this hint helped lp_solve to more quikly redue the searh spaeby enabling a better branhing, although it might not have the same e�et withother solvers that follow a di�erent branh and bound strategy.3.3 Heuristis for Lower BoundsAs we have only been able to solve small problem instanes exatly with lp_solve,we deided to implement a geneti algorithm (GA) that is speially tailored toour optimization models and allows us to study large problem instanes as well.Our GA repeats the following steps iteratively until the population has on-verged:1. Generate a new generation of individuals by reombining randomly hosenpairs of parent individuals.2. Mutate eah gene of an individual with a probability of pmutation. Trans-mission powers xi ∈ R are mutated by adding a random value drawn froma Gaussian distribution with mean 0 and a standard deviation of σi to it,where σi is adapted during evolution. Radio hannels and AP assoiationsare mutated by randomly hoosing a new value from the respetive set ofallowed values.3. Finally, we use a tournament seletion strategy, where randomly hosenpairs of individuals taken from both parent and hild generation ompetewith eah other and the �tter individual of eah pair (i.e. one with thelower ontention) survives until the next round.Up to now, the algorithm is pretty muh standard. However, we have hadgood experiene with equipping our GA with a speial rossover operator anda healing strategy.Aording to the building-blok hypothesis [8℄, one should arrange the geneson an individual's hromosome in suh a way that those genes that are orrelatedin their in�uene on an individual's �tness should be plaed lose to eah other,so that it is less likely that the ross-over operator would tear them apart duringreombination. We have therefore arranged genes representing a node's trans-mission power, hannel seletion and AP assignment on a 2-dimensional planeinstead of the traditional 1-dimensional string, and we have done so in suh a14



Available Channels1 2 3 4ILB 12 12 12 12DLB all 12 12 12 12OPT 1 42 20 14 122 28 12 12 123 17 12 12 124 34 14 12 125 19 12 12 126 33 15 12 12GA 1 42.0 20.0 14.0 12.02 28.4 12.0 12.0 12.03 17.0 12.4 12.0 12.04 34.8 14.0 12.0 12.05 19.0 13.6 12.4 12.06 33.0 15.0 12.4 12.0MC 1 58.8 40.0 24.2 27.62 44.8 28.6 23.2 26.83 67.0 46.4 24.2 23.64 62.4 29.6 35.8 24.25 62.2 30.4 28.0 23.46 45.4 29.0 23.4 22.2Table 1: Minimum ontention for varying number of available hannels in 6di�erent senarios of 4 APs and 5 STAs eah.way that the distane relationships between nodes are preserved on the hro-mosome. Our rossover operator then hooses a random straight ut throughthe hromosome plane, reombining the ut-o� hromosome fragments of thehosen pair of individuals.Furthermore, in order to improve the hanes of obtaining a large amountof valid solutions within our population, we apply a healing strategy aftereah iteration. The healing proess involves two phases. First, it searhesfor nodes whose minimum signal strength requirements are not met and adaptsthe sender's transmitting power to the required value, if it does not exeed themaximum allowed power. If this is not suessful, the healing proess tries to�nd a better AP to assoiate to for all STAs in turn.In preparatory experiments we have veri�ed that the geneti algorithm doesindeed �nd near-optimal or even the optimal solutions. The experiments wereperformed on 6 di�erent senarios of 4 APs and 5 STAs eah. APs have beenplaed in loations drawn from a bivariate normal distribution around the enterof a 1km x 1km simulation area, with the onstraints that they are plaed notloser than 20m and not farther than 150m apart from the next AP. For theremaining parameters, please refer to the later setion on our main experiments15



and results (Setion 5.1).In Table 1 we have listed the minimum ontention for all 6 senarios, asalulated by the geneti algorithm (GA) for 1 to 4 available hannels, averagedover 5 independent simulation runs eah. The table also shows the minimumontention values as alulated by the solver (OPT), the values for the radiorange independent and radio range dependent lower bounds (ILB and DLB,respetively) and �nally the average results from 5 runs of a single, randomlygenerated solution (Monte Carlo (MC)), with one appliation of the healingproess to generate valid solutions.As the results of our experiments show, the theoretial lower bound an bereahed in all 6 senarios if there are 4 available hannels. The fat that the lowerbound has been reahed means that all but one AP have one STA assigned, theother has 2 STAs. Note that this well-balaned ase an usually not be reahedin larger senarios. As the number of available hannels dereases, it is notpossible to avoid ontention between basi servie sets anymore in some of thesenarios. Note that in most ases, the GA was able to �nd the optimal solution.4 Distributed AlgorithmIn this setion we desribe our distributed algorithm for reduing the ontentionin a wireless aess network. It onsists of �ve building bloks:
• Data dissemination, in whih eah AP gains knowledge about other APswithin its horizon as well as the STAs whih these APs are aware of andare able to over at the required signal strength.
• Loal negotiation, in whih an AP suggests a loal reon�guration of thenetwork to all APs within its horizon, waits for their feedbak on how thisreon�guration would a�et network performane in their viinity andthen deides either to ommit or abandon this reon�guration.
• A �tness funtion with whih to evaluate the urrent state of the networkwithin an APs horizon and the e�et of a proposed reon�guration.
• An algorithm used to �nd loal reon�gurations.
• A mehanism to determine, whih APs are allowed to propose loal re-on�gurations and when.An AP's horizon de�nes whih other APs and STAs in its geographial viinityit knows and onsiders in �nding improvements. When hosing the extent of thehorizon, one has to make the typial tradeo� between the hanes for �ndingthe globally optimal on�guration and the omputational e�ort and signalingoverhead. In our experiments we have de�ned the horizon of an AP i as the setof all APs that are either within ontention range of AP i themselves or are ableto serve a STA that is in ontention range of i. Adhering to the notation fromprevious setions, the horizon Hi of AP i an be mathematially formulated as:16



Hi = {m ∈ {1, ..., I} | si ∗ pim ≥ lm

∨ (∃k ∈ {I + 1, ..., I + K} :

si ∗ pik ≥ lk ∧ sm ∗ pik ≥ rk)}4.1 Data DisseminationThe objetive of the �rst building blok of our algorithm is to keep APs up-dated about other APs within their horizon and all STAs whose minimum signalstrength requirement an be met by at least one of the APs within the horizon.APs initially �nd out about their neighbors by sanning for periodi beaonsignals on all available hannels. Upon reeiving a beaon from a previouslyunknown neighbor, the AP sends out a WELCOMEmessage to its new neighbor,both on the wireless link and on the wired bakbone network. This assumes thatthe IP address of the new neighbor is known. The most simple solution is to leteah AP inlude its IP address as an additional Management Frame InformationElement[26℄ in its broadasted beaons. As legay stations ignore unknowninformation elements, this solution is bakward ompatible. Another solutionwould be to use the Candidate Aess Router Disovery (CARD) protool[6℄,whih is an experimental protool de�ned by the IETF Seamoby working group.Both the WELCOME message and the reply to it (WELCOME_ACK) on-tain information about the sending AP and about all STAs whih the senderis urrently aware of and whose minimum signal strength requirements it anmeet. By sending these messages over both the wireless link and the bakbone,we an further gain information about whether the wireless link is asymmetrior not, i.e. if one aess point is able to hear the other but not vie versa.Furthermore, all ative APs periodially send UPDATE messages to all APswithin their horizon ontaining their urrent STA information list. This in-formation has an expliit expiration time, so when an AP does not reeiveUPDATE messages from a neighbor for a ertain length of time, it will assumeit has deativated without signing o�. UPDATE messages are always sent viathe wired bakbone, so that this soft-state approah does not onsume valuablewireless resoures.We also onsider the ase that two APs that annot hear eah other diretlynevertheless produe ontention in eah other's BSS. This may happen when anSTA is loated in between the AP it is assoiated to and another AP that iswithin ontention range. The STA may then notify its own AP of the ontendingAP's presene so that both APs may ontat eah other using the mehanismdesribed above.4.2 Loal NegotiationBased on its knowledge about APs and STAs within its horizon, an AP may runa loal optimization algorithm to searh for better on�gurations for itself andits neighboring APs. As in the previous setion we use the amount of ontention17



present within the AP's horizon as the funtion to minimize, but di�erent �tnessfuntion may be used as well. If an AP �nds a on�guration that will improveontention within its own horizon by a ertain positive delta, it suggests thenew on�guration to its neighbors by sending them an OFFER message withthe new on�guration.Upon reeiving an OFFER, every neighbor determines the e�et of the on-�guration hange would have on their part of the network. Note that the setsof nodes within the horizons of the APs sending the OFFER and reeivingthe o�er will usually not be idential, although the intersetion set should usu-ally be large. All reeivers of an OFFER then answer with an OFFER_REPLYmessage ontaining the delta in ontention that would result from atually om-mitting the on�guration hange. When the AP that initiated negotiations hasreeived replies from all its neighbors, it alulates the sum of all delta valuesinluding its own. If the net e�et of the reon�guration proposal is positive,the initiating AP sends a COMMIT message to all neighbors, who then updatethe loal knowledge about their neighborhood and possibly hange the radiohannel they operate on or instrut individual STAs to reassoiate with a di�er-ent AP. In the urrent version of our algorithm, an AP sends a message to eahof its assoiated STAs to instrut it to hange in hannels aording to the in-tended new on�guration. Alternatively, all assoiated STAs ould be informedby letting APs inlude a Channel Swith Announement element (de�ned in the802.11h standard) in their management frames.There are three ases in whih the initiating AP will send a WITHDRAWmessage to its neighbors in order to anel a reon�guration attempt. The�rst ase is that the initiator alulates a negative or zero net e�et of thereon�guration proposal. Seondly, it may happen that one of the reeiversof an OFFER message is already proessing a reon�guration proposal by adi�erent AP whih has not been ommitted or rejeted yet. It then refuses thenew OFFER by answering with a BUSY message. Finally, if at least one of theneighbors does not respond to the OFFER within a ertain time interval, theinitiator will assume the message was lost or the reeiver has deativated.4.3 Reon�guration AlgorithmsIn order to �nd a reon�guration that will yield a lower amount of ontention,an AP applies an optimization algorithm to the set of APs and STAs within itshorizon, inluding itself. We have experimented both with our problem-spei�geneti algorithm and a new greedy heuristi whih we termed �balane andseparate�. It works in two phases:1. In the balaning phase, the heuristi tries to distribute the number of asso-iated STAs to an AP as evenly as possible using the algorithm desribedin Setion 3.1.2. As mentioned in the disussion of the balaning algorithm, it optimisti-ally assumes that there is no ontention between BSSes, either beause18



they are spaed su�iently far apart from eah other or operate on di�er-ent hannels. In the separation phase the heuristi therefore tries to assignhannels in suh a way that the two BSSes with the highest amount ofinter-BSS ontention operate on di�erent hannels and that the remain-ing BSSes are assigned hannels in the order of dereasing inter-BSS on-tention. If it is unavoidable to hoose an already assigned hannel, theheuristi hooses the one that will add the least amount of ontention tothe network.4.4 Coordination of Reon�gurationsThe last building blok of our algorithm is onerned with the question whenAPs attempt to �nd and propose an improved on�guration. We have usedboth an unoordinated approah, in whih eah AP performs reon�gurationattempts as a Poisson proess. Furthermore, we have used two token-passingalgorithms, where an AP urrently holding a token waits for a random timeinterval before attempting to propose a reon�guration and passing the tokenon to a randomly hosen neighboring AP. The two token-based approahes di�erin that the �rst approah starts with a single token that irulates the network,while in the seond all APs initially hold a token. When an AP reeives a newtoken from a neighbor while already holding one, the new token is destroyed, sothat eventually only one token remains in the network. Lost or destroyed tokensould be replaed by letting eah AP generate a new token at a very small rate,whih ould vary with the amount of ontention�and therefore the neessityfor a new token�within an AP's horizon. However, we have not onsidered thease of token loss and replaement.The rationale behind experimenting with di�erent reon�guration oordina-tion approahes is that one an expet the global level of ontention in the systemto inrease more rapidly when a high number of aess points onurrently tryto �nd and propose reon�gurations, as it is the ase with the unoordinatedapproah. On the other hand, when reon�gurations are made at di�erent lo-ations of the network at the same time, there is a hane that the e�et of onereon�guration will be ounterprodutive with respet to another reon�gura-tion in the long run. The token passing approah inreases the probability thattwo subsequent reon�gurations take plae on neighboring or at least nearbyaess points. Finally, to start with a high number of tokens that graduallydereases, might be a ompromise between the two former approahes.5 Experiments and Results5.1 Senario Generation and Simulation SetupUnless otherwise noted, all experiments were onduted in senarios with 50APs and 100 STAs within a 1km by 1km simulation area. In a �rst step, 16of the APs were plaed to regularly over the simulation area. Afterwards, the19



experiment sets preparatory evaluationrepetitions 6 10simulation area 1km2 1km2# of APs / STAs 4 / 5 50 / 100hannels 3 3
si 20 dBm 20 dBm
ri -82 dBm -82 dBm
li -84 dBm -84 dBmalgorithms OPT, GA Loal GA, B&Stokens n/a 0, 1, NTable 2: Parameters for Simulation Experiments.remaining APs were plaed uniformly over the simulation area. The loationof eah STA was hosen by piking an AP randomly and then plaing the STAwithin a distane of 10% to 90% of the radio range of the AP, drawn from auniform distribution.We then alulated the path losses between eah pair of nodes based onthe empirial indoor propagation loss model reommended in ITU-R P.1238-2[22℄. The maximum transmission power si for eah node was set to 20dBm(or 100mW), whih is the maximum power allowed for IEEE 802.11b wirelessLANs in Europe. We have set li, the minimum signal strength to detet a busymedium, and ri, the minimum signal strength requirement of a node to -84dBmand -82dBm, respetively, as these are typial values for an Orinoo Gold IEEE802.11b adapter.Initially, all nodes in the network are inative. When a simulation run isstarted, nodes are ativated as a Poisson proess with rate 1/30 seonds. Anativated node is an AP in 60% of the ases, otherwise an STA. AtivatedAPs immediately start to ontat APs in their viinity. Upon deteting a newneighbor, an AP will provide it with updates on its state every 10 seonds viathe bakbone. When an STA is ativated, it immediately starts sanning forbeaon frames whih APs broadast every 50 seonds. After 5 seonds it hekswhether it has already reeived beaons and then either assoiates with thenearest AP or ontinues sanning. Simulations run for a duration of 10 hoursof simulation time, eah and every simulation run is repeated 10 times withdi�erent senarios.If no tokens are passed in the network, the generation of reon�gurationattempts per AP is a Poisson proess with rate 1/100 seonds. If one or moretokens are present, the holding time of a token is exponentially distributed withmean 100s.Table 2 one more summarizes the most important parameters used in ourexperiments in a ompat form. For illustrative purposes, we provide a snapshotof an ongoing simulation in Figure 1. 20
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Figure 1: Snapshot of a Simulation RunLoal GA Loal B&Sinitial tokens 0 1 N 0 1 Nmean 776.8 828.1 779.2 828.5 868.9 835.1std. dev. 121.8 94.1 107.1 112.5 118.5 133.8GA mean 551.0GA std. dev. 61.9MC mean 1237.9MC std. dev. 141.2Table 3: Comparison of Contention Levels Ahieved by the Distributed Algo-rithm Using GA and B&S as Loal Reon�guration Algorithms.5.2 Comparison of Reon�guration and Coordination Al-gorithmsThe objetive of our �rst experiment has been to �nd out how well our dis-tributed algorithm manages to redue the ontention in the network understudy. We have therefore run our algorithm on 10 di�erent wireless networksenarios with both the geneti algorithm (GA) as heuristi for �nding loalreon�guration potential as well as the balane-and-separate (B&S) heuristi.In order to study the e�et of onurrent reon�gurations versus sequentialreon�gurations, we also ombined eah of our three di�erent reon�gurationoordination approahes with both algorithms: Unoordinated reon�guration(0 tokens), token-passing with 1 token, and N initial tokens for eah of N aesspoints. Additionally, we have applied a run over 10,000 iterations of our genetialgorithm and single shots of a Monte Carlo optimizer to the whole network toserve as estimates for the best and worst ase behaviour. The resulting averageontention values and their standard deviation are shown in Table 3 . Figure2 additionally shows the development of the amount of ontention over time21
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whih until now has not reeived muh attention in the literature, but poses areal pratial problem to the deployment of emerging large-sale WLANs.In partiular we have ontributed mathematial optimization models thatan be used to jointly determine the optimal transmission power settings andhannel assignments for aess points and stations, as well as the optimal as-signment of stations to aess points whih will result in the least amount ofontention in the network. The proposed models over the ase of low traf-� intensity, in whih only physial arrier sense is used, as well as the ase ofhigh tra� intensity, onsidering the additional ontention aused by RTS/CTSframes. In addition, we have presented two theoretial lower bounds on on-tention, we have provided a transformation of our model to make it solvable withlinear optimizers for small instanes, and we have presented a geneti algorithmwhih is speially tailored to solve our ontention minimization problem, but islikely to be useful in other wireless network optimization problems as well.Our main ontribution in this paper is a distributed algorithm and proto-ol for self-oordination of wireless aess points from di�erent administrativedomains based solely on knowledge about the immediate neighborhood. Ex-perimental results have shown that our distributed algorithm is apable of ex-ploiting between 53% and 67% of the potential for reduing network ontentionompared to what ould be ahieved with perfet knowledge. Furthermore, wehave presented di�erent self-oordination shemes, enabling tradeo�s betweenfast onvergene on low ontention levels on the one hand and low reassoiationrates respetively low signaling overhead on the other hand. These tradeo�s or-respond to the degree of onurreny that is ontrolled by our di�erent tokenshemes.Besides these enouraging performane results, we also want to stress themodular framework we devised for the self-oordination in large-sale WLANsunder di�erent domains. It should allow for an easy extension of the andidatebuilding bloks we devised with building bloks from other researhers, e.g.for the reon�guration algorithm where we pereive that there is still room forimprovement. In partiular, it was also possible for us to integrate results fromprevious researh into our framework and show its e�etiveness.For future work, we pereive the development of even more e�etive re-on�guration and/or oordination shemes as a short-term goal. However, ourattention should now also be brought to the ooperation assumption and seeif we an relax this towards non-ooperative environments where, of ourse,we would require the right inentive strutures. In the same diretion we arealready atively thinking on how to make the protools seure espeially withregard to resiliene against denial of servie attaks. Currently, we are imple-menting the presented framework on a set of 4G Aess Cubes manufatured by4G Systeme Ltd. in order to be able to investigate its feasibility and salabilityin a real-world environment.
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