
Isospeed : Improving (min,+) Convolution by
Exploiting (min,+)/(max,+) Isomorphism
Raffaele Zippo # Ñ

Dipartimento di Ingegneria dell’Informazione, University of Firenze, Italy
Dipartimento di Ingegneria dell’Informazione, University of Pisa, Italy
Distributed Computer Systems Lab (DISCO), TU Kaiserslautern, Germany

Paul Nikolaus #Ñ

Distributed Computer Systems Lab (DISCO), TU Kaiserslautern, Germany

Giovanni Stea #Ñ

Dipartimento di Ingegneria dell’Informazione, University of Pisa, Italy

Abstract
(min,+) convolution is the key operation in (min,+) algebra, a theory often used to compute
performance bounds in real-time systems. As already observed in many works, its algorithm can be
computationally expensive, due to the fact that: i) its complexity is superquadratic with respect to
the size of the operands; ii) operands must be extended before starting its computation, and iii) said
extension is tied to the least common multiple of the operand periods.

In this paper, we leverage the isomorphism between (min,+) and (max,+) algebras to devise
a new algorithm for (min,+) convolution, in which the need for operand extension is minimized.
This algorithm is considerably faster than the ones known so far, and it allows us to reduce the
computation times of (min,+) convolution by orders of magnitude.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Networks
→ Network performance analysis; Mathematics of computing → Mathematical software performance

Keywords and phrases Deterministic Network Calculus, min-plus algebra, max-plus algebra, per-
formance, algorithms

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2023.12

Supplementary Material Software (ECRTS 2023 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.9.1.3

Funding This work was supported in part by the Italian Ministry of Education and Research (MIUR)
in the framework of the FoReLab project (Departments of Excellence).

Acknowledgements This work is inspired by the results in [20] – we wish to thank Steffen Bondorf
for pointing out this paper to us, as well as Raul-Paul Epure for suggestions with respect to some
proofs.

1 Introduction

(min,+) and (max,+) algebras [2, 17] lie at the core of theories for the analysis of worst-case
performance bounds.1 More specifically, Deterministic Network Calculus (DNC) [10, 9,
8, 15, 4] – devised for network traffic – and Real-Time Calculus (RTC) [25] – devised for
event-triggered systems – are both based on (min,+) and (max,+) algebra. Some recent
papers analyzing real-time systems using DNC or RTC are [24, 19, 7, 3]. In both theories,
flows of traffic (in DNC) or events (in RTC) are represented as cumulative functions of time,

1 While commonly called algebras in DNC jargon, (min,+) and (max,+) are semirings [4, Ch. 2].

C
o
n
si
st

en
t *
Complete * W

ell D
o
cu
m
ented * Easy t

o R

eu
se
 *

 *
 Evaluated

 *
 E
C
R
T
S
 *

 Ar
tifact *

 A
E

© Raffaele Zippo, Paul Nikolaus, and Giovanni Stea;
licensed under Creative Commons License CC-BY 4.0

35th Euromicro Conference on Real-Time Systems (ECRTS 2023).
Editor: Alessandro V. Papadopoulos; Article No. 12; pp. 12:1–12:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:raffaele.zippo@ing.unipi.it
https://rzippo.github.io/
https://orcid.org/0000-0001-9111-7471
mailto:nikolaus@cs.uni-kl.de
https://disco.cs.uni-kl.de/index.php/people/former-members/paul-nikolaus
https://orcid.org/0000-0001-5277-0267
mailto:giovanni.stea@unipi.it
http://docenti.ing.unipi.it/g.stea/
https://orcid.org/0000-0001-5310-6763
https://doi.org/10.4230/LIPIcs.ECRTS.2023.12
https://doi.org/10.4230/DARTS.9.1.3
https://doi.org/10.4230/DARTS.9.1.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Isospeed: Improving Convolution by Isomorphism

counting the traffic (or the events) arrived up to time t. The service guarantees offered
by elements where resource contention may occur (e.g., packet schedulers at the output
of a network) are also represented as functions of time, called curves.2 I/O relationships
at a node, represented as operations in (min,+) and (max,+) algebra, allow one to derive
worst-case performance guarantees, e.g., bounds on the transit delay of a flow, or the backlog
at a node. These theories are compositional, i.e., they allow one to model complex systems
by first modeling their elements in isolation, and then composing their models, again using
operations in (min,+) or (max,+) algebra. For instance, in DNC, the minimum service that
a packet scheduler guarantees to a flow traversing it is represented by a service curve β.
Accordingly, if a flow traverses two such schedulers, having service curves β1 and β2, the
minimum service that the latter is guaranteed on an end-to-end basis can be obtained by
computing the (min,+) convolution of β1 and β2. A similar property exists in RTC. In
this paper, we concentrate on properties of (min,+) algebra. However, given the strong
similarities between the two theories, we will often use (·,+) when the discussion applies to
both (min,+) and (max,+) algebra.

The issue of automated computation of (·,+) algebra expressions is relevant: algebraic
expressions which look simple on paper can in fact require lengthy computations. The
research community has therefore developed several software packages to automate this task.
In doing so, they have addressed the problem of finding efficient data structures to represent
functions and curves, and efficient algorithms to implement basic (·,+) algebra operations.
Works [6, 4] provided an “algorithmic toolbox” for DNC: they showed that piecewise-affine
functions that are ultimately pseudo-periodic (UPP) represent suitable models for both
traffic and service guarantees, and provided algorithms for most (·,+) algebra operations.
The toolbox was first implemented in the COINC free library [5], which is not available
anymore, and later by the commercial library RTaW-Pegase [21] and the open-source library
Nancy [28]. A very similar model [4, p. 95], called variability characterization curves (VCCs),
was implemented by the RTC toolbox [26]. Broadly speaking, in both UPP and VCC models
functions and curves are represented as sequences of segments, and periodicity is leveraged
to allow functions defined in [0, +∞) to be represented with a finite amount of information.

One of the most important operations in (min,+) algebra is (min,+) convolution. The
latter has a complexity which is superquadratic with the size of its operands (i.e., the number
of segments in their sequences), which makes it computationally expensive. What is worse,
the algorithms that compute these operations require that the sequences of operands must
be extended beforehand, which reflects on the overall complexity. Operand extension, in turn,
depends heavily on numerical properties of the operands themselves, and is often related to
the hyperperiod, i.e., the least common multiple (lcm) of the period lengths of the operands.
The impact of the above issue grows exponentially when operations are chained together,
which limits the scope of the studies that one can do in practice. Different techniques have
been proposed in the literature to mitigate or avoid this issue, such as using containers and
inclusion functions [16], avoiding the periodic parts altogether by bounding the study a priori
[12, 13, 14], using a posteriori representation minimization to mitigate the impact on chained
operations [29], devising more efficient algorithms for specific subclasses of operands and
operations [29], namely subadditive functions and (min,+) convolution.

In this paper, we provide a novel technique to reduce the computation cost of (min,+)
convolution, under general hypotheses on the operands, which we call isospeed. Our technique
relies on exploiting the isomorphism between (min,+) and (max,+) algebra, thoroughly

2 To be precise, in a curve an abscissa τ describes what may happen in any interval of length τ .

R. Zippo, P. Nikolaus, and G. Stea 12:3

described in [17]. It is shown therein that the result of a (min,+) convolution can be obtained
by computing the isomorphic operation, i.e., the (max,+) convolution, if one applies a simple
transformation to the operands beforehand, and to the result afterwards. This transformation
is called pseudoinversion. This implies that there are always two ways to compute a (min,+)
convolution: the direct one, e.g., using the algorithm described in [4], and the inverse one
– i.e., the one based on pseudoinversion and isomorphism. This was first observed in [20]:
the authors found that – in their specific use cases – the inverse algorithm for (min,+)
convolution was considerably faster than the direct one. However, they did not provide an
explanation as to why. Lacking the above, one cannot know whether this is a general result
or just a stroke of luck. In this paper, we investigate the above in depth, providing novel
results of both theoretical and practical significance. First, we offer a cogent explanation for
the empirical observation in [20], which allows us to understand when and why one algorithm
will be faster than the other a priori, and when instead no conclusion can be drawn. This
is because the complexity of (min,+) convolution depends on numerical properties of the
operands, and pseudoinversion modifies them, making the computational cost of the inverse
algorithm different from the direct one’s. Then, we build on the above observation to devise
a new algorithm, that reduces the operand extension and the runtime of (min,+) convolution
to a minimum. This makes it no worse (barring negligible overhead), and often much better,
than the fastest between the direct algorithm and inverse one. Our algorithm improves the
feasibility of performance studies that cannot benefit from the other methods mentioned
above. For instance, it applies regardless of the shape of the operands, unlike the algorithms
in [29], which requires operands to be subadditive, or the method described in [12, 13, 14],
which requires service curves to be superadditive. Moreover, it optimizes single (min,+)
convolutions, unlike the representation minimization in [29], which is only beneficial when
chaining operations and does nothing to optimize individual ones. While the two methods
can work in conjunction, individual (min,+) convolutions may take minutes or more using
the standard algorithm. Due to space limitations, we can only focus on (min,+) convolution
in this paper. However, our results can be generalized to (max,+) convolution as well, which
can be improved in the same way, with the same performance benefits. This is because the
isomorphism, as the name implies, works both ways.

The rest of this paper is organized as follows: In Section 2, we introduce the mathematical
background and state of the art. Then, in Section 3, we present our isospeed algorithm,
which is evaluated in Section 4. Section 5 concludes the paper and highlights future work.

2 Background and Notation

In this section, we provide the mathematical and algorithmic background required for this
paper. We define the types of functions that we use and the operations that we aim to
improve. We use a ∧ b = min (a, b) and a ∨ b = max (a, b). We also use N0 to denote the set
of non-negative integers {0, 1, 2, 3, . . . }, N for the set of strictly positive integers {1, 2, 3, . . . },
and Q+ the set of non-negative rationals (including 0).

2.1 The UPP Model
To implement DNC and RTC computations in software, one needs to provide finite repres-
entations of functions and well-formed algorithms for (·,+) operations. In this paper, we
use the model discussed in [29, 27] and implemented in Nancy [28], which we also use to
implement our optimization. According to the widely accepted approach described in [6, 4],

ECRTS 2023

12:4 Isospeed: Improving Convolution by Isomorphism

Tf

df

cf

time

data

(a) f .

Tf

df

cf

time

data

(b) Rf .

Figure 1 An ultimately pseudo-periodic piecewise-affine function f and its representation Rf .

a sufficiently generic class of functions useful for (·,+) computations is the set U of (i)
ultimately pseudo-periodic Q+ → Q ∪ {+∞, −∞} (ii) piecewise affine functions. We define
both properties (i) and (ii) separately:

▶ Definition 1 (Ultimately Pseudo-Periodic Function [6, p. 8]). Let f be a function Q+ →
Q ∪ {+∞, −∞}. Then, f is ultimately pseudo-periodic (UPP) if exists Tf ∈ Q+, df ∈
Q+ \ {0}, cf ∈ Q ∪ {+∞, −∞} such that

f(t + k · df) = f(t) + k · cf , ∀t ≥ Tf , ∀k ∈ N. (1)

We call Tf the pseudo-periodic start, or length of the initial transient, df the period length,
and cf the period height. We also say that f is UPP from Tf .

▶ Definition 2 (Piecewise Affine Function [6, p. 9]). We say that a function f is piecewise
affine (PA) if there exists an increasing sequence (ai), i ∈ N0 which tends to +∞, such that
a0 = 0 and ∀i ∈ N0, it either holds that f(t) = bi + ρit for some bi, ρi ∈ Q, or f(t) = +∞,
or f(t) = −∞ for all t ∈]ai, ai+1[.

We remark that functions in U are not necessarily non-decreasing, and can assume infinite
values. Both these properties are useful for algebraic manipulations. Among the functions in
U , we distinguish Ultimately Constant (UC) ones. A function is UC if there exists a T ∈ Q+
such that f(t) = f(T) ∀t ≥ T . Similarly, an Ultimately Infinite (UI) function is one such that
f(t) = +∞, or f(t) = −∞ for all t ≥ T . Typical cases of UI curves in DNC are the service
curves of delay elements. Throughout this paper, we will exclude UC and UI functions,
because some properties do not hold otherwise. This limitation is of negligible impact, since
(min,+) convolution is computationally trivial when an operand is UC/UI.

For functions in U , it is enough to store a representation of the initial transient part
and of one period, which is a finite amount of information. This is exemplified in Figure 1.
Accordingly, we call a representation Rf of a function f the tuple (S, T, d, c), where T, d, c

are the values described above, and S is a sequence of points and open segments describing f

in [0, T + d[. We use both points and open segments in order to easily model discontinuities.
We will use the umbrella term elements to encompass both when convenient. We denote
with n(S) the cardinality of a sequence S, i.e., the number of its elements. Note that, given
Rf , one can compute f(t) for all t ≥ 0, and also SI

f , i.e., a sequence describing f in the finite
interval I for any I ⊂ Q+

0 . Furthermore, being finite, Rf can be used as a data structure to
represent f in code. As it will be useful in the following, we define Cut to be an (obvious)
algorithm that, given Rf and an interval I, computes SI

f . With a little abuse of notation,

R. Zippo, P. Nikolaus, and G. Stea 12:5

we will use (·,+) operators directly on finite sequences such as SI
f . For instance, given the

(min,+) convolution (formally defined later), we will write S
If

f ⊗ S
Ig
g to express that we

are computing the (min,+) convolution f ⊗ g, limited to the values of f in interval If and
those of g in interval Ig. It will be useful in the following to consider a function f ∈ U in a
restricted support D.3 This is done as follows:

▶ Definition 3 (Min and Max Restrictions). Let f ∈ U and D ⊆ Q+. Then, its min restriction
over a support D is defined as

f |∧D :=
{

f(t), if t ∈ D,
+∞, otherwise.

Moreover, its max restriction over a support D is defined as

f |∨D :=
{

f(t), if t ∈ D,
−∞, otherwise.

In this work, we will often consider D to be an interval I of the form [0, a[or [a, +∞[.
In many cases, it will be useful to restrict a function to its transient part, i.e, to interval
I = [0, Tf [, or to its periodic part, i.e., I = [Tf , +∞[, using shorthands f∧

t and f∨
t , as well as

f∧
p and f∨

p , respectively. Accordingly, one can decompose f as f = f∧
t ∧ f∧

p or f = f∨
t ∨ f∨

p .
A (·,+) operator can be defined computationally as an algorithm that takes UPP repres-

entations of its input functions and yields a UPP representation of the result. Considering
a generic binary operator4 [·] ∗ [·], in order to compute f ∗ g we need an algorithm that
computes Rf∗g from Rf and Rg, i.e., Rf , Rg → Rf∗g. We call this by-curve algorithm. Such
an algorithm consists of the following steps:
1. compute valid parameters Tf∗g, df∗g and cf∗g for the result.
2. compute the intervals If and Ig, for the sequences S

If

f = Cut(Rf , If) and, likewise, S
Ig
g ;

3. compute S
If

f , S
Ig
g → S

If∗g

f∗g where If∗g = [0, Tf∗g + df∗g[, i.e., use an algorithm that
computes the resulting sequence from the sequences of the operands. We call this
by-sequence algorithm for operator [·] ∗ [·];

4. return Rf∗g = (Sf∗g, Tf∗g, df∗g, cf∗g).

The by-curve algorithm for operator [·] ∗ [·] allows us to compute the result with any
operands. Works [6, 4] provide such computational descriptions for most DNC operators,
such as (·,+) convolution and deconvolution, while [27] provides the same for pseudoinverses
(formally defined in the next section).

▶ Remark 4. Parameters Tf∗g, df∗g and cf∗g, as well as intervals If and Ig, are sufficient to
compute a representation Rf∗g. There may be, in general, more than one way to compute
them for an algorithm, resulting in different performance.

Intuitively, dealing with shorter sequences leads to faster by-sequence algorithms. Optim-
ized parameters and intervals can be found either by making restrictive assumptions on the
shape of the operands, or – as we do in this paper – by exploiting algebraic properties.

3 Inspired by [6, p. 7], we use support D to assign a subset outside of which the function is constantly
−∞ or +∞. Note that this does not necessarily mean, in general, that f is finite on D. We mostly use
it to define a set within which the properties of f are observed.

4 The same process applies also, with minor adjustments, to unitary operators.

ECRTS 2023

12:6 Isospeed: Improving Convolution by Isomorphism

2.2 Upper and Lower Pseudoinverses
It was first shown in [17] that (min,+) and (max,+) algebra can be regarded as specular
images of each other. In fact, results in one algebra can be mapped to the other via
pseudoinversion of operands and results. This isomorphism will be exploited throughout
this paper. Hereafter, we discuss the essential definitions and properties of pseudoinverses,
taken from [27].5

▶ Definition 5 (Lower and Upper Pseudoinverse). Let f ∈ U be non-decreasing. Then its
lower pseudoinverse f−1

↓ and its upper pseudoinverse f−1
↑ are defined as

f−1
↓ (y) := inf {t ≥ 0 | f(t) ≥ y} ,

f−1
↑ (y) := sup {t ≥ 0 | f(t) ≤ y} .

The lower pseudoinverse is always left-continuous and the upper pseudoinverse is right-
continuous. Moreover, upper and lower pseudoinverses can be combined to yield something
close to an involutive property. Consider a non-decreasing function f . Then, if f is left-
continuous, f(t) =

(
f−1

↑

)−1

↓
(t). If f is right-continuous, f(t) =

(
f−1

↓

)−1

↑
(t). UPP properties

and algorithms for the pseudoinverses are summarized here.

▶ Theorem 6 ([27], Theorem 9, Theorem 10). Let f be a non-decreasing UPP function that
is neither UC nor UI. Then, f−1

↓ and f−1
↑ are function of U with

Tf−1
↓

= f (Tf + df) , (2)

Tf−1
↑

= f (Tf) (3)

df−1
↓

= df−1
↑

= cf , (4)

cf−1
↓

= cf−1
↑

= df . (5)

The exact algorithm for upper/lower pseudoinverses is reported in [27]. In both cases, it
can be computed in linear time with the operand’s sequence size, i.e., it is O (n(S)). This
makes pseudoinversion considerably less complex than (min,+) convolution, which – as we
will discuss below – is superquadratic. Both operations yield a result whose sequence has
a cardinality similar to its operand’s. The two cardinalities are not exactly equal because
constant segments in the operand map to discontinuities in the pseudoinverse and vice versa.
Segments count as elements in the cardinality, whereas discontinuities do not. This will be
recalled later on, when we discuss performance.

2.3 (min,+) and (max,+) Convolution
Convolution is one of the most common operations in (·,+) algebra. We introduce here both
(min,+) and (max,+) convolution.

▶ Definition 7 (Convolution in (min,+) / (max,+) Algebra). Let f, g be non-decreasing. Their
(min,+) convolution is defined for all t ≥ 0 as

f ⊗ g(t) := inf
0≤s≤t

{f(s) + g(t − s)} .

5 These definitions differ from the ones in [17, p. 60]. In fact, [17] considers functions defined in R, hence
having no boundaries, whereas functions in U are defined in Q+, hence 0 and f(0) constitute a boundary.

R. Zippo, P. Nikolaus, and G. Stea 12:7

Their (max,+) convolution is defined for all t ≥ 0 as

f ⊗ g(t) := sup
0≤s≤t

{f(s) + g(t − s)} .

A fundamental result, which uses the above properties, is the isomorphism between
(min,+) and (max,+) convolution, which enables us to replace one with the other, via
pseudoinversion of operands and results.

▶ Theorem 8 (Isomorphism of Convolution For Left-Continuous Functions ∈ U). Let f, g ∈ U
be left-continuous and non-decreasing. Then,

(f ⊗ g)−1
↑ =

(
f−1

↑

)
⊗
(

g−1
↑

)
. (6)

A proof can be derived by following along the lines of [20, Theorem 1], [17, Theorem 10.3b],
but adapting to the fact that we consider functions ∈ U . As a consequence, since the (min,+)
convolution of left-continuous functions is itself left-continuous, we obtain:

f ⊗ g =
(

(f ⊗ g)−1
↑

)−1

↓
=
(

f−1
↑ ⊗ g−1

↑

)−1

↓
. (7)

The algorithms for (·, +) convolution of UPP curves require one to specialize the generic
steps described in Section 2.1. Due to space limitations, we discuss in depth (min,+)
convolution only. (max,+) convolution can be presented along the same lines.

It was proved in [6] that (min,+) convolution f ⊗g can be computed if one decomposes its
operands into their transient and periodic parts, according to Definition 3. More specifically,
the procedure is as follows:
1. Decompose the operands as f = f∧

t ∧ f∧
p and g = g∧

t ∧ g∧
p .

2. Compute partial convolutions involving at least one transient part: htt := f∧
t ⊗ g∧

t ,
htp := f∧

t ⊗ g∧
p , hpt := f∧

p ⊗ g∧
t . These can be computed using the algorithms described

in [6]. These computations are not particularly complex, since at least one of the operands
is defined in a finite interval.

3. Compute the partial convolution of the periodic parts, hpp := f∧
p ⊗ g∧

p . This is the
computationally complex part, as we detail below.

4. Compute f ⊗ g = htt ∧ htp ∧ hpt ∧ hpp.

In [6, Proposition 4.5], UPP properties are derived for all these parts (htt, htp, hpt, hpp)
and their minimum. We summarize this result here as Proposition 9.

▶ Proposition 9 ([6], Proposition 4.5). Let f, g ∈ U . Then their (min,+) convolution f ⊗ g

is again ∈ U . Moreover,

df⊗g = lcm(df , dg) , (8)

cf⊗g = df⊗g · min
(

cf

df
,

cg

dg

)
= lcm(df , dg) · min

(
cf

df
,

cg

dg

)
(9)

are a period length and height for f ⊗ g.

From the proof of [6, Proposition 4.5] we can extract the following result for, in particular,
the convolution of periodic parts.

ECRTS 2023

12:8 Isospeed: Improving Convolution by Isomorphism

▶ Corollary 10 ((min,+) convolution of periodic parts.). Let f and g ∈ U . Then, hpp = f∧
p ⊗g∧

p

is again a function of U with

dhpp = df⊗g = lcm(df , dg) , (10)

chpp
= cf⊗g = dhpp

· min
(

cf

df
,

cg

dg

)
, (11)

Thpp
= Tf + Tg + lcm(df , dg) . (12)

And that, in order to compute f∧
p ⊗ g∧

p , it is sufficient to use

If∧
p

=
[
Tf , Tf + 2 · dhpp

[
,

Ig∧
p

=
[
Tg, Tg + 2 · dhpp

[
,

Ihpp
=
[
Tf + Tg, Tf + Tg + 2 · dhpp

[
.

(13)

Corollary 10 shows that the period of the convolution of the periodic parts depends on the
lcm of the periods of the operands. Algorithm 1 reports the pseudocode for the (min,+) con-
volution algorithm, based on the above decomposition [6]. When computing the convolution
of the periodic parts, operands have to be extended, i.e., computed in intervals If∧

p
, Ig∧

p
. The

complexity of the by-sequence algorithm for the convolution (line 6) is [6, p. 43]

O
(

n

(
S

If∧
p

f∧
p

)
· n

(
S

Ig∧
p

g∧
p

)
· log

(
n

(
S

If∧
p

f∧
p

)
· n

(
S

Ig∧
p

g∧
p

)))
. (14)

However, domains If∧
p

, Ig∧
p

depend on lcm(df , dg). On one hand, this corroborates the
observation that computing hpp is the most complex task. On the other hand, the number of
operations required may vary considerably depending on numerical properties of the operands.
In fact, lcm(df , dg) ranges from max (df , dg) to the product of the numerators of df and dg

6.
Therefore, the runtime of the convolution of the periodic parts may vary a lot.

We briefly discuss (max,+) convolution, to highlight that it can be computed via the
same decomposition, at similar big-O complexity, as the (min,+) convolution [6]. The main
difference is that, since a supremum is used in place of an infimum, the decomposition is
based on the maximum, rather than the minimum, of the parts. The procedure is as follows:
1. Decompose the operands as f = f∨

t ∨ f∨
p and g = g∨

t ∨ g∨
p .

2. Compute partial convolutions involving at least one transient part: htt := f∨
t ⊗ g∨

t ,
htp := f∨

t ⊗ g∨
p , hpt := f∨

p ⊗ g∨
t . These can be computed by adapting the algorithms for

the (min,+) convolution described in [6]. Again, these computations are not particularly
complex, since at least one of the operands is defined in a finite interval.

3. Compute the partial convolution of the periodic parts, hpp := f∨
p ⊗ g∨

p .
4. Compute f ⊗ g = htt ∨ htp ∨ hpt ∨ hpp.

When computing the convolution of the periodic parts, operands have to be computed in
intervals If∨

p
, Ig∨

p
, which do depend on dhpp

= lcm(df , dg). The worst-case complexity of the
by-sequence algorithm for the (max,+) convolution can be derived following the same steps
as for the (min,+) convolution in [6, p. 43], and is the same as in (14), provided that one
substitutes S

Ix∨
p

x∨
p

for S
Ix∧

p

x∧
p

for both operands x. Like with (min,+) convolution, domains If∨
p

,
Ig∨

p
depend on lcm(df , dg). Therefore, the same observations already discussed apply here as

well: computing hpp is the most complex task, and the number of operations it requires may
vary considerably depending on numerical properties of the operands.

6 We recall that the lcm of two fractions is the lcm of their numerators divided by the greatest common
divisor of their denominators.

R. Zippo, P. Nikolaus, and G. Stea 12:9

Algorithm 1 Pseudocode for (min,+) convolution.
Input Functions f and g.
Return Their (min,+) convolution f ⊗ g.

1: Decompose the operands as f = min
(
f∧

t , f∧
p

)
and g = min

(
g∧

t , g∧
p

)
2: Compute htt := f∧

t ⊗ g∧
t , htp := f∧

t ⊗ g∧
p , hpt := f∧

p ⊗ g∧
t as described in [6]

3: Compute hpp := f∧
p ⊗ g∧

p as follows:
4: Let dhpp

= lcm(df , dg); chpp
= dhpp

· min
(

cf

df
,

cg

dg

)
; Thpp

= Tf + Tg + dhpp
.

5: Let
If∧

p
=
[
Tf , Tf + 2 · dhpp

[
;

Ig∧
p

=
[
Tg, Tg + 2 · dhpp

[
;

Ihpp =
[
Tf + Tg, Tf + Tg + 2 · dhpp

[
.

6: Compute S
Ihpp

hpp
= S

If∧
p

f∧
p

⊗ S
Ig∧

p

g∧
p

7: Rhpp =
(

S
Ihpp

hpp
, Thpp , dhpp , chpp

)
8: f ⊗ g = min (htt, htp, hpt, hpp)

3 Improving the Runtime of (min,+) Convolution

This section reports our contributions. First, we observe that there are always two algorithms
to compute the (min,+) convolution, and discuss why one can be faster than the other. Our
observations motivate our improved (min,+) convolution algorithm, which outperforms both
the above.

3.1 Alternative Algorithms for (min,+) Convolution
The algorithms for (min,+) and (max,+) convolution are very similar, and they have the same
complexity on the same operands. However, a (min,+) convolution f ⊗ g can be computed
via a (max,+) convolution of pseudoinverse operands f−1

↑ , g−1
↑ , as per (7) [20].

This means that one can always compute a (min,+) convolution in two different ways:
1. the direct method, using Algorithm 1;
2. the inverse method, using pseudoinversion of the operands, (max,+) convolution, and

pseudoinversion of the result, via (7).
Now, both methods have the same big-O complexity. In fact, pseudoinversion is linear,
and – as explained in the previous section – both (min,+) and (max,+) convolutions
are superquadratic. Despite this, it was observed in [20] that the inverse algorithm was
significantly faster than the direct one, which is counterintuitive, since pseudoinversion adds
overhead.7

We present here a sound explanation of the above phenomenon, which is missing in [20],
and serves as a basis for our improved method. In both the (min,+) and (max,+) convolutions,
the dominant factor for the complexity is the length of the extended sequences (as per (14)),
which depends on the number of periods that each operand must be extended. For the

7 In [20], this result was presented within the context of VCC curves using RTC Toolbox [26] and event-
based service curves, which differs from the one referenced here, which is instead based on the UPP
model implemented in Nancy [28]. However, this distinction does not affect the following discussion.

ECRTS 2023

12:10 Isospeed: Improving Convolution by Isomorphism

1 2 3 4 5

1

2

3

time

events

Figure 2 Example of event-based service curve
used in [20], having abscissas in R+ and ordinates
in N0.

1ms 10ms 100ms 1s 10s
100µs

1ms

10ms

100ms

1s

10s

inverse

di
re

ct

Figure 3 runtimes of the direct vs. inverse
algorithms for (min,+) convolution.

direct algorithm, such extension occurs on hyperperiod lcm(df , dg). Hence, we can write
lcm(df , dg) = kdf

· df = kdg
· dg. We call kdf

and kdg
extension multipliers. Computing the

cut of f in
[
Tf , Tf + 2 · dhpp

[
(13) entails extending f by 2 · kdf

periods – and g by 2 · kdg .
On the other hand, the inverse algorithm uses pseudoinversion of the operands, which

swaps their period lengths df , dg with their period heights cf , cg. Consider in fact computing
f ⊗ g via (7). We obtain for the inner function f−1

↑ ⊗ g−1
↑ , using Theorem 6,

df−1
↑ ⊗ g−1

↑
= lcm

(
df−1

↑
, dg−1

↑

)
= lcm(cf , cg) ,

cf−1
↑ ⊗ g−1

↑
= max

(
cf−1

↑

df−1
↑

,
cg−1

↑

dg−1
↑

)
· df−1

↑ ⊗ g−1
↑

= max
(

df

cf
,

dg

cg

)
· lcm(cf , cg) .

(15)

Thus, in the inverse algorithm, the hyperperiod is lcm(cf , cg) = kcf
· cf = kcg

· cg, and
the extension multipliers are instead kcf

and kcg
.

Both algorithms have the same complexity, but the operands they work on may have
considerably different size (i.e., the cardinalities of their extended sequences), hence their
runtime can be vastly different. For instance, if kdf

> kcf
and kdg > kcg , the inverse

algorithm will be faster. This is likely the case in the experiments of work [20], which uses
event-based service curves, exemplified in Figure 2. However, depending on the parameters
of the operands, two more cases can be given, i.e.:

kdf
< kcf

and kdg
< kcg

, in which case the direct algorithm will generally be faster;
kdf

< kcf
and kdg > kcg (or vice versa), in which case the comparison is inconclusive.

Figure 3 compares the direct and the inverse approach. We generated 100 pairs of operands
randomly, and reported the runtimes of each (min,+) convolution as coordinates of points
on the cartesian plane, with the direct algorithm on the ordinates and the inverse one on the
abscissas. The horizontal (or vertical) distance between a point and the bisector indicates
the difference (in orders of magnitude) between choosing one algorithm or the other. The
above figure clearly shows that the comparison may swing either way, and that there is a lot
to be gained in choosing wisely.

Hereafter, we follow up on the above observations. We show that the (min,+)/(max,+)
isomorphism holds in more general settings than those described in Section 2, and that this,
in turn, can be leveraged to define an improved algorithm for (min,+) convolution.

R. Zippo, P. Nikolaus, and G. Stea 12:11

3.2 Exploiting Isomorphism to Speed up (min,+) Convolution
As discussed above, the most expensive part of (min,+) convolution is computing hpp =
f∧

p ⊗ g∧
p , and this is due to the problem of operand extension. We have observed in the

previous section that pseudoinversion may considerably alter the way operands are extended.
Our intuition is that we can limit the extension of each operand individually to the minimum
of what the direct and inverse algorithms would do, i.e., we can always choose the smallest
extension multiplier operand by operand, independently. This will allow hpp to be computed
using smaller sequences, in considerably less time. We obtain this result via incremental
steps. First, we show that isomorphism allows us to find another set of parameters for hpp.

▶ Theorem 11. Let f, g ∈ U be left-continuous and non-decreasing functions. Then, hpp =
f∧

p ⊗ g∧
p is again a function of U with

dhpp = max
(

df

cf
,

dg

cg

)
· lcm(cf , cg) = max

(
kcg · dg, kcf

· df

)
, (16)

chpp
= lcm(cf , cg) , (17)

Thpp
= sup

{
t ≥ Tf + Tg | f∧

p ⊗ g∧
p (t) ≤ f(Tf) + g(Tg) + lcm(cf , cg)

}
. (18)

The proof is reported in Appendix A.2. Now, since both Corollary 10 and Theorem 11
compute valid parameters for hpp, we can always use the minimum of each:

dhpp
= min

(
lcm(df , dg) , max

(
kcg

· dg, kcf
· df

))
, (19)

chpp =dhpp · min
(

cf

df
,

cg

dg

)
, (20)

Thpp
= min(Tf + Tg + lcm(df , dg) ,

sup
{

t ≥ Tf + Tg | f∧
p ⊗ g∧

p (t) ≤ f(Tf) + g(Tg) + lcm(cf , cg)
}

). (21)

Then, we show that we can find alternative cuts of f∧
p and g∧

p required to compute hpp.

▶ Corollary 12. Given f and g ∈ U which are left-continuous and non-decreasing in [Tf , +∞[
and [Tg, +∞[, respectively, and are neither UC nor UI. Then, to compute f∧

p ⊗g∧
p via (max, +)

isomorphism of restricted functions, it is sufficient to use sequences S
I′

f∧
p

f∧
p

and S
I′

g∧
p

g∧
p

, with

I ′
f∧

p
=
[
Tf , T ′

f + 2 · kcf
· df

]
, I ′

g∧
p

=
[
Tg, T ′

g + 2 · kcg
· dg

]
. (22)

where we used T ′
f = sup {t ≥ Tf | f(t) = f(Tf)} and T ′

g = sup {t ≥ Tg | g(t) = g(Tg)}.8

The proof is reported in Appendix A.2. Corollary 12 states that, instead of computing
f∧

p ⊗ g∧
p using domains If∧

p
and Ig∧

p
defined in (13), we can use both I ′

f∧
p

and I ′
g∧

p
, whose size

depends on kcf
, kcg instead of kdf

, kdg . Finally, we show that we can mix and match the
above intervals, to minimize the extension of each operand, independently.

▶ Theorem 13 (Mix and Match ((min,+) Convolution)). Let f and g ∈ U which are neither
UC nor UI, and are left-continuous and non-decreasing in [Tf , +∞[and [Tg, +∞[, respectively.
Let If∧

p
, Ig∧

p
be the intervals to compute f∧

p ⊗ g∧
p according to (13), and let I ′

f∧
p

, I ′
g∧

p
be the

intervals to compute the same through Corollary 12. Then If∧
p

∩ I ′
f∧

p
, Ig∧

p
∩ I ′

g∧
p

are valid
intervals to compute f∧

p ⊗ g∧
p .

8 The suprema are attainable since the functions are left-continuous over the respective intervals.

ECRTS 2023

12:12 Isospeed: Improving Convolution by Isomorphism

t1 t2 t3 t4
f(t1)

f(t2)

f(t4)

ρ1

ρ2

ρ3

time

data

(a) Sf .

t1

t2

t3

t4

f(t1) f(t2) f(t4)
1/ρ1

1/ρ3

time

data

(b) Sf
−1
↑ .

Figure 4 Example of upper pseudoinverse of a sequence Sf .

The proof is reported in Appendix A.2. This theorem allows us to compute hpp using
extended sequences that have the minimum cardinality between those that the direct and
the inverse methods would compute. We exemplify this through a simple example.

Consider f and g with df = 2, cf = 13, dg = 11 and cg = 3. Then, using the direct
method we will compute 2 · kdf

= 22 period extensions of f and 2 · kdg
= 4 period extensions

of g. On the other hand, using the inverse method, we will compute the same result with
2 · kcf

= 6 period extensions of f and 2 · kcg
= 26 period extensions of g. Which of the two

will be faster depends both on the number of elements contained in each period of f and g,
but also on the topological properties of these elements, which are difficult to understand
ex ante [29]. Using the above theorem, though, we can just take the best option for each
independently: 2 · kcf

= 6 period extensions of f and 2 · kdg = 4 period extensions of g –
which is clearly better than both the previous options.

Based on the above, we can define a new algorithm, called isospeed, which outperforms
both the direct and the inverse ones. It consists in modifying in Algorithm 1 including the
new, optimized values for the parameters, i.e., (19), (20) and (21) at line 4, and Theorem 13
at line 5. Moreover, we also optimize line 6, i.e., the by-sequence convolution, still leveraging
isomorphism. We start from the algorithm in [6], summarized below.

Given two sequences Sa and Sb, consider their elements ea
1 , . . . , ea

n and eb
1, . . . , eb

m, where
n = n(Sa), m = n(Sb). For each pair ea

i , eb
j , we can then compute the elementary (min,+)

convolution ea
i ⊗ eb

j , i.e., n(Sa) · n(Sb) elementary convolutions. Then, Sa ⊗ Sb is computed
as the lower envelope of these elementary convolutions. However, it is easy to see that not all
pairs ea

i , eb
j will contribute to the end result. Indeed, the convolution result is relevant only

for a given interval (e.g., in Algorithm 1 Ihpp
= [Tf + Tg, Tf + Tg + 2 · lcm(df , dg)[), thus

any elementary convolution whose abscissas fall outside such interval can be safely skipped.
We call this horizontal filtering. Similarly, when applying the optimizations described in
the previous section, we can ignore elementary convolutions whose ordinates fall outside
[f(Tf) + g(Tg), f(Tf) + g(Tg) + 2 · lcm(cf , cg)] (vertical filtering). Horizontal and vertical
filtering further reduce the computation time.

Moreover, we recall that – under pseudoinversion – constant segments become discontinu-
ities and vice versa, leading to different cardinalities for the sequences of an operand. This is
exemplified by Figure 4, where Sf has six elements, while Sf

−1
↑ has four. While constant

segments do contribute to the complexity of computing the convolution, discontinuities do
not, being only a difference in value between two elements. Thus, also within the by-sequence
convolution there may be a runtime difference between the direct and inverse approach.

R. Zippo, P. Nikolaus, and G. Stea 12:13

time

data

(a) “Horizontal” curve.

time

data

(b) “Vertical” curve.

time

data

(c) “Balanced” curve.

Figure 5 Shapes of curves used in our experiments.

Accordingly, we optimize the by-sequence convolution via the following heuristic: we
count the total number of constant segments and discontinuities of the two operands, call
them C and D, respectively. Then, if D > C, we perform the by-sequence convolution of the
operands as they are. If, instead D < C, we pseudo-invert the sequences first, perform a
(max,+) by-sequence convolution, and then pseudo-invert the result again. This heuristic is
cheap, being O (n(Sf) + n(Sg)). However, it may not have 100% accuracy. In fact, work [29]
discusses that the topological properties of the elements, which are difficult to understand ex
ante, may also influence the runtime of by-sequence convolution.

Finally, we discuss the algorithmic cost of the isospeed algorithm. Applying the mix-
and-match theorem requires computing the extension multipliers of both operands and
comparing constants, which is O (1). However, testing the hypotheses that each operand
must be left-continuous and non-decreasing is – strictly speaking – O (n(S)), where S is the
base sequence, not the extended one. Note that the same cost has to be paid in the inverse
algorithm as well. However, we observe that such a cost can easily be amortized by testing
these properties once per operand and caching the result. Moreover, computing C and D for
the heuristic also has a linear cost.

4 Performance Evaluation

The isospeed algorithm has been implemented by extending Nancy [28], an open-source
library implementing the algorithms from [6, 29, 27].We compared it against two baselines,
i.e., the direct algorithm, [6], recalled in Algorithm 1, and the inverse one [20]. To highlight
the impact of the by-sequence convolution and its heuristic, we run the experiments using
three different shapes of operands, shown in Figure 5. Horizontal curves have constant
segments but no discontinuities, whereas vertical curves have discontinuities but no constant
segments. Balanced curves are similar to the type of curves studied in [20], and have an
equal number of constant segments and discontinuities.

We run the experiments on a cloud Virtual Machine (Intel Xeon Processors (CascadeLake)
cores @2.2 GHz, 32 GB of DRAM, Ubuntu 22.04), using randomly generated parameters for
the shapes discussed above. We run all algorithms in serial mode (rather than parallel, which
is the default in Nancy). To make the comparison more challenging, horizontal filtering is
included in the baseline algorithms as well, since it does not depend on the results of this
paper, whereas vertical filtering – which is a consequence of isomorphism – is used only in
the isospeed algorithm. Moreover, we include the cost of testing operand properties in the
isospeed and inverse algorithms (there is nothing to test for the direct one). We measured
the time to compute the convolution using the three methods.

ECRTS 2023

12:14 Isospeed: Improving Convolution by Isomorphism

Our results are shown in Figures 6–8. The results of Figures 6a, 7a, and 8a and Figures 6b,
7b, and 8b clearly show that the isospeed algorithm outperforms blindly choosing either
the direct or the inverse approach, reducing runtimes often by several orders of magnitude.
Moreover, Figures 6c, 7c, and 8c show that isospeed performs at least as well as the best
between direct and inverse in most cases, and sometimes even better, being up to one order
of magnitude faster. The improvements occur whenever both baseline algorithms extend
one operand more than necessary, whereas the isospeed does not, due of its mix-and-match
approach. At the risk of stating the obvious, we remark that you do not know which of the
two baseline algorithms is the best beforehand.

There are indeed some cases when isospeed adds a modicum of overhead – see the few
points above the bisector in the figures. This is due to two different reasons: the points in
the bottom-left corner of, e.g., Figures 7a and 7c are experiments where runtimes are in the
order of milliseconds, and the overhead of testing hypotheses is significant against such a
short timespan. We do not see this as a relevant shortcoming – there is little to optimize if
the baseline is already that fast. The points above the bisector in the top-right region of
Figures 8b and 8c are instead experiments when our heuristic fails to select the most efficient
way to perform the by-sequence convolution. This only occurs with balanced curves, and
for a reason: with horizontal and vertical curves, the choice is quite clear-cut – it is either
D ≫ C or C ≪ D, respectively, and the heuristic always selects the best approach. Balanced
curves, instead, are designed to thwart our heuristic – they have, in fact, D ≈ C.

All the above experiments highlighted speedups of up to one order of magnitude against
the (clairvoyant) best baseline. Such speedups depend on numerical properties of the
operands, and random generation of operand parameters seldom hits on the most interesting
cases. As a last set of experiments, we generate horizontal operands in such a way that
kdf

> kcf
and kdg

< kcg
(or vice versa), as in the example reported at the end of Section 3.2,

so that each baseline algorithm will always extend one operand more than necessary. The
results of these experiments are reported in Figure 9, and they show more frequent and
significant speedups against the best baseline (e.g., compared with Figure 6) – reaching two
orders of magnitude.

As a last remark, we observe that the absolute magnitude of the runtimes involved in
these experiments is a few tens of seconds at most. This was done on purpose to keep
experiments manageable, and it certainly does not imply that (min,+) convolutions are
always that fast. One can always devise cases where runtimes are in the order of hours or
more – all it takes is period lengths and heights that are products of large primes. Moreover,
it is well known that chaining convolutions leads to exponentially increasing runtimes, much
like chaining lcms does, a phenomenon called state explosion [12, 13, 29]. In these cases,
isospeed may act as an enabler of otherwise unfeasible performance studies.

5 Conclusions

In this paper, we have investigated what is perhaps the most common operation in (min,+) al-
gebra, i.e., (min,+) convolution. Starting from the observation that – due to (min,+)/(max,+)
isomorphism – there are always two ways to compute a (min,+) convolution, the direct
and inverse algorithm, we provide a technically sound explanation of an observation first
appeared in [20], i.e., that one algorithm can be considerably faster than the other. The
reason lies in the way the two algorithm extend operands, which is the key factor in the
complexity of said algorithms. Based on the above observation, we prove algebraic properties
that allow one to minimize operand extension, for each operand independently. This allows

R. Zippo, P. Nikolaus, and G. Stea 12:15

1ms10ms100ms1s 10s1m.10m.

1ms

10ms

100ms

1s

10s

1m.

10m.

direct

is
os

p
ee

d

(a) isospeed vs. direct.

1ms10ms100ms1s 10s1m.10m.

1ms

10ms

100ms

1s

10s

1m.

10m.

inverse

is
os

p
ee

d

(b) isospeed vs. inverse.

1ms10ms100ms1s 10s1m.10m.

1ms

10ms

100ms

1s

10s

1m.

10m.

best

is
os

p
ee

d

(c) isospeed vs. best.

Figure 6 Performance comparison of the three algorithms. Operands are horizontal curves.

1ms 10ms100ms 1s 10s 1m.

1ms

10ms

100ms

1s

10s

1m.

direct

is
os

p
ee

d

(a) isospeed vs. direct.

10ms100ms 1s 10s 1m. 10m.

1ms

10ms

100ms

1s

10s

1m.

inverse

is
os

p
ee

d

(b) isospeed vs. inverse.

1ms 10ms100ms 1s 10s 1m.

1ms

10ms

100ms

1s

10s

1m.

best

is
os

p
ee

d
(c) isospeed vs. best.

Figure 7 Performance comparison of the three algorithms. Operands are vertical curves.

100µs 1ms 10ms100ms 1s 10s

100µs

1ms

10ms

100ms

1s

10s

direct

is
os

p
ee

d

(a) isospeed vs. direct.

1ms 10ms 100ms 1s 10s

100µs

1ms

10ms

100ms

1s

10s

inverse

is
os

p
ee

d

(b) isospeed vs. inverse.

100µs 1ms 10ms100ms 1s 10s

100µs

1ms

10ms

100ms

1s

10s

best

is
os

p
ee

d

(c) isospeed vs. best.

Figure 8 Performance comparison of the three algorithms. Operands are balanced curves.

us to devise a novel algorithm, called isospeed, that outperforms both the direct and inverse
algorithms, reducing runtimes often by several orders of magnitude. More interestingly, our
isospeed algorithm also beats a clairvoyant heuristic that guesses the best of the above two
baselines: except in few cases when it adds a modicum of overhead, isospeed is at least as
fast as that, and can be one or two orders of magnitude faster.

Abating the cost of (min,+) convolution by orders of magnitude is not just a performance
improvement: it may also enable performance studies that were previously considered to be
beyond the realm of doable, e.g., because of state explosion. Some examples of this problem
are reported in [29]. Our findings allow us to reduce this problem as much as possible, in the
most general settings: unlike the techniques described in [12, 13, 14, 29], which only apply
to specific classes of operands, isospeed only requires operands to be left-continuous and
non-decreasing.

ECRTS 2023

12:16 Isospeed: Improving Convolution by Isomorphism

1ms10ms100ms1s 10s1m.10m.

1ms

10ms

100ms

1s

10s

direct

is
os

p
ee

d

(a) isospeed vs. direct.

1ms 10ms100ms 1s 10s 1m.

1ms

10ms

100ms

1s

10s

inverse

is
os

p
ee

d

(b) isospeed vs. inverse.

1ms 10ms100ms 1s 10s 1m.

1ms

10ms

100ms

1s

10s

best

is
os

p
ee

d

(c) isospeed vs. best.

Figure 9 Performance comparison of the three algorithms. Operands are horizontal curves, and
their parameters are set so that comparing extension multipliers is inconclusive.

Due to space limitations, we were unable to discuss (max,+) convolution in this paper.
However, all the results in this paper apply – via minor, straightforward changes – to
that as well, because isomorphism works both ways. More to the point, the performance
improvements for (max,+) convolution are exactly the same, since – as we discussed briefly
in Section 2 – the algorithm for the (max,+) convolution is not different from that of (min,+)
convolution. This increases the significance of our findings.

As a future work, we plan to devise more precise heuristics, that allow one to identify the
most efficient by-sequence convolution more effectively. Moreover, we believe that the same
process highlighted in this paper could be used to find alternative, improved algorithms for
other operations, e.g., the (·, +) deconvolution.

Finally, many works in real-time literature deal with supply functions and demand bound
functions, which are similar to the curves discussed here [23, 11, 18, 22, 1]. A further avenue
of research is then to explore the possibility to express these results using Real-Time Calculus,
hence making the computational improvements discussed in this paper available to speed up
the resolution of these problems.

References
1 Luis Almeida and Paulo Pedreiras. Scheduling within temporal partitions: response-time

analysis and server design. In Proceedings of the 4th ACM international conference on Embedded
software, pages 95–103, 2004.

2 François Baccelli, Guy Cohen, Geert Jan Olsder, and Jean-Pierre Quadrat. Synchronization
and linearity: an algebra for discrete event systems. John Wiley & Sons Ltd, 1992.

3 Mahmoud Bazzal, Lukas Krawczyk, and Carsten Wolff. RTCAnalysis: Practical Modular
Performance Analysis of Automotive Systems with RTC. In Audrius Lopata, Daina Gudonienė,
and Rita Butkienė, editors, Information and Software Technologies, pages 209–223, Cham,
2021. Springer International Publishing.

4 Anne Bouillard, Marc Boyer, and Euriell Le Corronc. Deterministic Network Calculus: From
Theory to Practical Implementation. Wiley, Hoboken, NJ, 2018.

5 Anne Bouillard, Bertrand Cottenceau, Bruno Gaujal, Laurent Hardouin, Sébastien Lagrange,
Mehdi Lhommeau, and Éric Thierry. COINC library: a toolbox for the Network Calculus. In
VALUETOOLS’09, 2009.

6 Anne Bouillard and Éric Thierry. An algorithmic toolbox for network calculus. Discrete Event
Dynamic Systems, 18(1):3–49, 2008.

7 Marc Boyer, Amaury Graillat, Benoît Dupont de Dinechin, and Jörn Migge. Bounding
the delays of the MPPA network-on-chip with network calculus: Models and benchmarks.
Performance Evaluation, 143:102124, 2020. doi:10.1016/j.peva.2020.102124.

8 Cheng-Shang Chang. Performance guarantees in communication networks. Springer-Verlang,
New York, USA, 2000.

https://doi.org/10.1016/j.peva.2020.102124

R. Zippo, P. Nikolaus, and G. Stea 12:17

9 Rene L Cruz. A calculus for network delay, part II: Network analysis. IEEE Transactions on
information theory, 37(1):132–141, 1991.

10 Rene L Cruz et al. A calculus for network delay, part I: Network elements in isolation. IEEE
Transactions on information theory, 37(1):114–131, 1991.

11 Xiang Feng and Aloysius K Mok. A model of hierarchical real-time virtual resources. In 23rd
IEEE Real-Time Systems Symposium, 2002. RTSS 2002., pages 26–35. IEEE, 2002.

12 Nan Guan and Wang Yi. Finitary real-time calculus: Efficient performance analysis of
distributed embedded systems. In 2013 IEEE 34th Real-Time Systems Symposium, pages
330–339, 2013.

13 Kai Lampka, Steffen Bondorf, and Jens Schmitt. Achieving efficiency without sacrificing
model accuracy: Network calculus on compact domains. In 2016 IEEE 24th International
Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS), pages 313–318. IEEE, 2016.

14 Kai Lampka, Steffen Bondorf, Jens B. Schmitt, Nan Guan, and Wang Yi. Generalized
finitary Real-Time calculus. In Proc. of the 36th IEEE International Conference on Computer
Communications (INFOCOM 2017), 2017.

15 Jean-Yves Le Boudec and Patrick Thiran. Network calculus: a theory of deterministic queuing
systems for the internet. Springer Science & Business Media, Berlin, Germany, 2001.

16 Euriell Le Corronc, Bertrand Cottenceau, and Laurent Hardouin. Container of (min,+)-linear
systems. Discrete Event Dynamic Systems, 24(1):15–52, 2014.

17 Jörg Liebeherr. Duality of the Max-Plus and Min-Plus Network Calculus. Foundations and
Trends in Networking, 11(3-4):139–282, 2017. doi:10.1561/1300000059.

18 Giuseppe Lipari and Enrico Bini. Resource partitioning among real-time applications. In 15th
Euromicro Conference on Real-Time Systems, 2003. Proceedings., pages 151–158. IEEE, 2003.

19 David A. Nascimento, Steffen Bondorf, and Divanilson R. Campelo. Modeling and Analysis
of Time-Aware Shaper on Half-Duplex Ethernet PLCA Multidrop. IEEE Transactions on
Communications, 71(4):2216–2229, 2023. doi:10.1109/TCOMM.2023.3246080.

20 Victor Pollex, Henrik Lipskoch, Frank Slomka, and Steffen Kollmann. Runtime Improved
Computation of Path Latencies with the Real-Time Calculus. In Proceedings of the 1st
International Workshop on Worst-Case Traversal Time, pages 58–65, 2011.

21 RealTime-at-Work. RTaW-Pegase (min,+) library. https://www.realtimeatwork.com/
rtaw-pegase-libraries/. Accessed: 2022-04-05.

22 Insik Shin and Insup Lee. Periodic resource model for compositional real-time guarantees. In
RTSS 2003. 24th IEEE Real-Time Systems Symposium, 2003, pages 2–13. IEEE, 2003.

23 Martin Stigge, Pontus Ekberg, Nan Guan, and Wang Yi. The digraph real-time task model.
In 2011 17th IEEE real-time and embedded technology and applications symposium, pages
71–80. IEEE, 2011.

24 Deepak Vedha Raj Sudhakar, Karsten Albers, and Frank Slomka. Generalized and scalable
offset-based response time analysis of fixed priority systems. Journal of Systems Architecture,
112:101856, 2021. doi:10.1016/j.sysarc.2020.101856.

25 L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for scheduling hard real-time
systems. In 2000 IEEE International Symposium on Circuits and Systems (ISCAS), volume 4,
pages 101–104 vol.4, 2000. doi:10.1109/ISCAS.2000.858698.

26 Ernesto Wandeler and Lothar Thiele. Real-Time Calculus (RTC) Toolbox.
http://www.mpa.ethz.ch/Rtctoolbox. URL: http://www.mpa.ethz.ch/Rtctoolbox.

27 Raffaele Zippo, Paul Nikolaus, and Giovanni Stea. Extending the Network Calculus Algorithmic
Toolbox for Ultimately Pseudo-Periodic Functions: Pseudo-Inverse and Composition, 2022.
doi:10.48550/arXiv.2205.12139.

28 Raffaele Zippo and Giovanni Stea. Nancy: An efficient parallel Network Calculus library.
SoftwareX, 19:101178, 2022. doi:10.1016/j.softx.2022.101178.

29 Raffaele Zippo and Giovanni Stea. Computationally efficient worst-case analysis of flow-
controlled networks with Network Calculus. IEEE Transactions on Information Theory, 2023.
doi:10.1109/TIT.2023.3244276.

ECRTS 2023

https://doi.org/10.1561/1300000059
https://doi.org/10.1109/TCOMM.2023.3246080
https://www.realtimeatwork.com/rtaw-pegase-libraries/
https://www.realtimeatwork.com/rtaw-pegase-libraries/
https://doi.org/10.1016/j.sysarc.2020.101856
https://doi.org/10.1109/ISCAS.2000.858698
http://www.mpa.ethz.ch/Rtctoolbox
https://doi.org/10.48550/arXiv.2205.12139
https://doi.org/10.1016/j.softx.2022.101178
https://doi.org/10.1109/TIT.2023.3244276

12:18 Isospeed: Improving Convolution by Isomorphism

A Appendix

This appendix reports the proofs of the main results of this paper, i.e., Theorem 11, Corol-
lary 12 and Theorem 13. In order to make these proofs rigorous, we need a few preliminary
technical clarifications. These preliminaries state that the (min,+)/(max,+) isomorphism
stated in [20, 17] holds for the convolution of periodic parts as well. This is fairly intuitive,
but requires to be rigorously stated nonetheless. Said preliminaries re-state existing results
from [6, 4, 17, 27], tweaking the existing proofs to accommodate restricted functions in U .
The preliminary results are reported in the first part of this appendix, and the proof of our
main results follow in the second part.

A.1 Preliminary results

In the main results of this work, we exploit properties analogue to the isomorphisms proved
in [17], such as Theorem 8, which need to be applied to functions restricted over a support,
e.g., f∧

p . Now, pseudoinverses – and, consequently, isomorphism – are defined for non-
decreasing functions, and restricted functions are not. Thus, in this section we generalize
pseudoinversion and isomorphism to include restricted functions.

▶ Definition 14 (Lower and Upper Pseudoinverse over an Interval). Let f ∈ U be non-
decreasing over I, where I = [a, +∞[⊂ Q. Then, its lower pseudoinverse over (the interval)
I is defined as

f−1
↓,I (y) :=

{
inf {t ∈ I | f(t) ≥ y} , if y ≥ f(a),
+∞, otherwise,

(23)

and its upper pseudoinverse over (the interval) I is defined as

f−1
↑,I (y) :=

{
sup {t ∈ I | f(t) ≤ y} , if y ≥ f(a),
−∞, otherwise.

(24)

Note that it does not hold in general that sup {t ∈ I | f(t) < y} = inf {t ∈ I | f(t) ≥ y},
for the lower pseudoinverse, as well as sup {t ∈ I | f(t) ≤ y} = inf {t ∈ I | f(t) > y}, for the
upper pseudoinverse. However, if y > f(a) (for I = [a, +∞[), the two equations hold. We
also note that, since these pseudoinverses consider only values of f(t) for t ∈ I, it follows
that f−1

↓,I =
(

f |∧I
)−1

↓,I
=
(

f |∨I
)−1

↓,I
, and similarly for f−1

↑,I . Finally, given f(I) := [f(a), +∞[,
the lower pseudoinverse over I is left-continuous over f(I), and the upper pseudoinverse over
I is right-continuous over f(I).

▶ Theorem 15. Let I be an interval of the form [a, +∞[. Let f ∈ U be neither UC nor UI,
and is non-decreasing over I. Then, its lower pseudoinverse over I, f−1

↓,I , is again a function
of U with

Tf−1
↓,I

=
{

f (Tf + df) , if a ≤ Tf ,
f (a + df) , if a > Tf ,

(25)

df−1
↓,I

= cf , (26)

cf−1
↓,I

= df , (27)

R. Zippo, P. Nikolaus, and G. Stea 12:19

and its upper pseudoinverse over I, f−1
↑,I , is again a function of U with

Tf−1
↑,I

=
{

f (Tf) , if a ≤ Tf ,
f (a) , if a > Tf ,

(28)

df−1
↑,I

= cf , (29)

cf−1
↑,I

= df . (30)

The proofs are easily derived following the steps of those in Theorem 9 and Theorem 10
in [27]. The only difference is that, since we are considering values of f(t) only for t ∈ [a, +∞[,
we can only consider f(t) to be UPP from max (Tf , a). Note that, in the rest of this paper,
we will always use a ≤ Tf , thus only the first branch of (25) and (28) apply. As briefly
mentioned in [27], one can improve the result of (25) using additional assumptions on the
shape of f . As this will be useful in this work, we derive these results explicitly.

▶ Lemma 16. Let f ∈ U be neither UC nor UI, right-continuous, and non-decreasing over
the interval I = [a, +∞[, where a ≤ Tf . Let

T ∗
f := f−1

↓,I (f(Tf)) = inf {t ≥ a | f(t) = f(Tf)} , (31)

T ∗∗
f := f−1

↓,I (f(T ∗
1 + df)) = inf {t ≥ a | f(t) = f(T ∗

1 + df)} . (32)

Then, if f is UPP from T ∗
f and if T ∗∗

f = T ∗
f + df , the pseudo-periodic start Tf−1

↑
in (25) can

be improved into

Tf−1
↓,I

= f(Tf). (33)

The properties addressed by Lemma 16 have to do with constant segments at the start
and the end of the pseudo-period which, as discussed in [27], can lead to Tf−1

↓,I
> f(Tf). The

conditions of Lemma 16 ensure that this does not happen, by checking that either a) there
are no constant segments before Tf and Tf + d, or b) these constant segments are of equal
length, such that f−1

↓,I is UPP from f(Tf). The proof consists, in fact, in verifying that due
to right-continuity of f and the definitions of T ∗

f , T ∗∗
f , it follows that a) or b) are verified

and thus Tf−1
↓,I

= f(Tf).

▶ Lemma 17. Let f ∈ U be neither UC nor UI, left-continuous, and non-decreasing over the
interval I = [a, +∞[, where a ≤ Tf . Moreover, let f−1

↑,I be its upper pseudoinverse over I.

Then, f−1
↑,I satisfies the conditions of Lemma 16, thus its lower pseudoinverse

(
f−1

↑,I

)−1

↓,[f(a),+∞[
is UPP from f−1

↑,I (Tf−1
↑,I

) = Tf .

The proof is easily derived by observing that, in order for f−1
↑,I to violate the conditions of

Lemma 16, f would need to have left-discontinuities, which is a contradiction.

▶ Lemma 18 (Sufficient cut for Upper Pseudoinverse over Interval). Let f ∈ U be neither
UC nor UI, and is left-continuous and non-decreasing over I = [a, +∞[. Then, in order to
compute f−1

↑,I (x) and x ∈ [x1, x2] ⊂ [f(a), +∞[with x1 < x2, it is sufficient to use f(t) with
t ∈ [t1, t2], where t1 := f−1

↑,I (x1) and t2 := f−1
↑,I (x2).

The proof is easily derived by observing that, for any x ∈ [x1, x2], sup {t ≥ a | f(t) ≤ x} =
sup {t1 ≤ t ≤ t2 | f(t) ≤ x}.

ECRTS 2023

12:20 Isospeed: Improving Convolution by Isomorphism

▶ Lemma 19 (Sufficient cut for Lower Pseudoinverse over Interval). Let f ∈ U be neither UC
nor UI, and is right-continuous and non-decreasing over I = [a, +∞[. Then, in order to
compute f−1

↓,I (x) with x ∈ [x1, x2] ⊂ [f(a), +∞[and x1 < x2, it is sufficient to use f(t) with
t ∈ [t1, t2], where t1 := f−1

↓,I (x1) and t2 := f−1
↓,I (x2).

The proof is similar to the one for Lemma 18.

▶ Lemma 20. Let f ∈ U be non-decreasing and I = [a, +∞[⊂ Q+. Let x ∈ I. If f(x) ≤ y,
then f−1

↑,I (y) ≥ x.

The proof follows along the lines of [17, pp. 62], since it follows from x ∈ I that we are in
the supremum case of (24). Next, we generalize Proposition 3.10 in [4, pp. 48].

▶ Proposition 21. Let f, g ∈ U be left-continuous and non-decreasing. Then, for any
t ∈ [Tf + Tg, +∞[it exists s∗ ∈ [Tf , t − Tg] such that

(f∧
p ⊗ g∧

p)(t) = inf
Tf ≤s≤t−Tg

{
f∧

p (s) + g∧
p (t − s)

}
= f(s∗) + g(t − s∗).

In other words, the infimum is attainable.

The proof follows along the lines of [4, pp. 48]. The only difference is related to the use
of Bolzano-Weierstrass theorem for real sequences, obtaining s∗ ∈ R+. However, it is easy
to show that, since functions of U are piecewise affine Q+ → Q ∪ {+∞, −∞}, given any
convergent sequence f(sn), sn ∈ Q+ and s∗ attains the limit of this sequence, then s∗ ∈ Q+.

▶ Proposition 22. Let f and g be non-decreasing and right-continuous functions of U . Then,
for any t ∈ [Tf + Tg, +∞[it exists s∗ ∈ [Tf , t − Tg] such that

(f∨
p ⊗ g∨

p)(t) = sup
Tf ≤s≤t−Tg

{
f∨

p (s) + g∨
p (t − s)

}
= f(s∗) + g(t − s∗)

In other words, the supremum is attainable.

The proof follows along the same lines as Proposition 21. Next, we provide a generalization
of Theorem 8 for functions restricted to their periodic part.

▶ Theorem 23. Let f, g ∈ U be left-continuous and non-decreasing. Then(
f∧

p ⊗ g∧
p

)−1
↑,[Tf +Tg,+∞[=

(
f−1

↑,p ⊗ g−1
↑,p

)
. (34)

The proof follows along the same lines of [17, Theorem 10.3, p. 69]. The only difference
is that, for x < f(Tf) + g(Tg), we derive that both sides are −∞. Next, we also generalize
the involutive property of pseudoinverses.

▶ Proposition 24. Let f ∈ U be left-continuous and non-decreasing on the interval I =
[a, +∞[. Let a′ := sup {t ≥ a | f(t) = f(a)} ≥ a. Then(

f−1
↑,[a,+∞[

)−1

↓,[f(a),+∞[
= f |∧[a′,+∞[.

The proof follows along the same lines of [17, Lemma 10.1 (c), pp. 64-6]. The only
difference is that, for t < a′, we derive that for both sides are +∞. Note that Proposition 24
implies that performing the lower pseudoinverse (over an interval) of an upper pseudoinverse
(over an interval) does not reconstitute f over that same interval, but only a subset of
it: in fact, we obtain f |∧[a′,+∞[instead of f |∧[a,+∞[, where a′ ≥ a. This information loss

R. Zippo, P. Nikolaus, and G. Stea 12:21

0 1 2 3 4 5

1

2

3

time

data

f |∧
[a,+∞[(

f−1
↑,[a,+∞[

)−1

↓,[f(a),+∞[

(a) f |∧[a,+∞[vs.
(

f−1
↑,[a,+∞[

)−1

↓,[f(a),+∞[
.

0 1 2 3

1

2

3

4

5

6

7

8

time

data

f−1
↑,[a,+∞[

(b) f−1
↑,[a,+∞[.

Figure 10 Example of loss of information when computing pseudoinverses over an interval.

is exemplified in Figure 10, where we show that the values of f between 1 and 2 are lost.
However, if the value a is known, it is easy to reconstitute f |∧[a,+∞[by observing that the
missing values of f in [a, a′[are all f(a′), which is part of the result. Again referencing
Figure 10, we can see how the constant segment in red is the missing piece that can be
reconstituted by knowing a = 1. We formalize this process through the reconstruction
operator, [f]a. Given a function f that is either +∞ or −∞ in [0, a′[, and finite in [a′, +∞[,
then

[f]a (t) :=

f(t), if t ∈ [0, a[,
f(a′), if t ∈ [a, a′[,
f(t), if t ∈ [a′, +∞[.

(35)

Using the reconstruction operator, we can state a stronger version of Proposition 24.

▶ Proposition 25. Let f ∈ U be left-continuous and non-decreasing on the interval I =
[a, +∞[. Let a′ := sup {t ≥ a | f(t) = f(a)} ≥ a. Then[(

f−1
↑,[a,+∞[

)−1

↓,[f(a),+∞[

]
a

= f |∧[a,+∞[. (36)

The proof is easily derived by applying (35). Combining these results, we can derive an
alternative expression for f∧

p ⊗ g∧
p , which is the analogous to (7) for restricted functions.

f∧
p ⊗ g∧

p =
[(

f−1
↑,p ⊗ g−1

↑,p

)−1

↓,[f(Tf)+g(Tg),+∞[

]
Tf +Tg

. (37)

A.2 Proofs of the results in Section 3.2
▶ Theorem 11. Let f, g ∈ U be left-continuous and non-decreasing functions. Then, hpp =
f∧

p ⊗ g∧
p is again a function of U with

dhpp
= max

(
df

cf
,

dg

cg

)
· lcm(cf , cg) = max

(
kcg

· dg, kcf
· df

)
, (16)

chpp
= lcm(cf , cg) , (17)

Thpp
= sup

{
t ≥ Tf + Tg | f∧

p ⊗ g∧
p (t) ≤ f(Tf) + g(Tg) + lcm(cf , cg)

}
. (18)

ECRTS 2023

12:22 Isospeed: Improving Convolution by Isomorphism

Proof. Using Proposition 25, we have that

f∧
p ⊗ g∧

p

(36)=
[((

f∧
p ⊗ g∧

p

)−1
↑,[Tf +Tg,+∞[

)−1

↓,[f(Tf)+g(Tg),+∞[

]
(Tf +Tg)

(34)=
[(

f−1
↑,p ⊗ g−1

↑,p

)−1

↓,[f(Tf)+g(Tg),+∞[

]
(Tf +Tg)

,

where we used Theorem 23 in the second line. For the inner part (the (max,+) convolution),
we obtain for all x ≥ f(Tf) + g(Tg) + chpp = f(Tf) + g(Tg) + lcm(cf , cg) that(

f−1
↑,p ⊗ g−1

↑,p

) (
x + chpp

)
= sup

f(Tf)≤u≤x+chpp −g(Tg)

{
f−1

↑,p (u) + g−1
↑,p(x + chpp

− u)
}

(x−g(Tg)≥f(Tf)+chpp)
= sup

f(Tf)≤u≤x−g(Tg)

{
f−1

↑,p (u) + g−1
↑,p(x + chpp − u)

}
∨ sup

f(Tf)+chpp ≤u≤x+chpp −g(Tg)

{
f−1

↑,p (u) + g−1
↑,p(x + chpp

− u)
}

,

We continue by substituting v := x + chpp
− u:(

f−1
↑,p ⊗ g−1

↑,p

) (
x + chpp

)
(v:=x+chpp −u)

= sup
f(Tf)≤u≤x−g(Tg)

f−1
↑,p (u) + g−1

↑,p(x + lcm(cf , cg)︸ ︷︷ ︸
=kcg cg

−u)

∨ sup

g(Tg)≤v≤x−f(Tf)

f−1
↑,p (x + lcm(cf , cg)︸ ︷︷ ︸

=kcf
cf

−v) + g−1
↑,p(v)

(x−u≥g(Tg),x−v≥f(Tf))

= sup
f(Tf)≤u≤x−g(Tg)

{
f−1

↑,p (u) + g−1
↑,p(x − u)

}
+ kcg

dg

∨ sup
g(Tg)≤v≤x−f(Tf)

{
f−1

↑,p (x − v) + g−1
↑,p(v)

}
+ kcf

df

=
(

f−1
↑,p ⊗ g−1

↑,p

)
(x) + max

(
kcg · dg, kcf

· df

)
,

where we used Theorem 6 in the fourth line. It follows then that

T ⊗−1
p

= f(Tf) + g(Tg) + lcm(cf , cg) , (38)

d ⊗−1
p

= chpp = lcm(cf , cg) , (39)

c ⊗−1
p

= max
(
kcg · dg, kcf

· df

)
. (40)

Next, for the outer part we consider the lower pseudoinverse of the above result, over the
interval [f(Tf) + g(Tg), +∞[. From Lemmas 16 and 17, it follows that

Thpp

(33)=
(
f∧

p ⊗ g∧
p

)−1
↑,[Tf +Tg,+∞[

(
T ⊗−1

p

)
(24)= sup

{
t ≥ Tf + Tg | f∧

p ⊗ g∧
p (t) ≤ T ⊗−1

p

}
.

R. Zippo, P. Nikolaus, and G. Stea 12:23

From Theorem 15 it follows also that

dhpp
= c ⊗−1

p
= max

(
kcg

· dg, kcf
· df

)
,

chpp
= d ⊗−1

p
= lcm(cf , cg) .

This finishes the proof. ◀

▶ Corollary 12. Given f and g ∈ U which are left-continuous and non-decreasing in [Tf , +∞[
and [Tg, +∞[, respectively, and are neither UC nor UI. Then, to compute f∧

p ⊗g∧
p via (max, +)

isomorphism of restricted functions, it is sufficient to use sequences S
I′

f∧
p

f∧
p

and S
I′

g∧
p

g∧
p

, with

I ′
f∧

p
=
[
Tf , T ′

f + 2 · kcf
· df

]
, I ′

g∧
p

=
[
Tg, T ′

g + 2 · kcg
· dg

]
. (22)

where we used T ′
f = sup {t ≥ Tf | f(t) = f(Tf)} and T ′

g = sup {t ≥ Tg | g(t) = g(Tg)}.9

Proof. The proof is based on using Proposition 25, as we did in the proof of Theorem 11. We
thus compute f∧

p ⊗ g∧
p through f−1

↑,p ⊗ g−1
↑,p. In the proof of Theorem 11, we derived the UPP

properties of the latter as (38), (39) and (40). Thus, we need to compute S
I

⊗−1
p

⊗−1
p

= S
Iq
q ⊗ SIr

r ,

where q := f−1
↑,p and r := g−1

↑,p with

I ⊗−1
p

= [f(Tf) + g(Tg), f(Tf) + g(Tg) + 2 · lcm(cf , cg)[, (41)

If−1
↑,p

= [f(Tf), f(Tf) + 2 · lcm(cf , cg)] =
[
f(Tf), f(Tf) + 2 · kcf

· cf

]
, (42)

Ig−1
↑,p

= [g(Tg), g(Tg) + 2 · lcm(cf , cg)] =
[
g(Tg), g(Tg) + 2 · kcg · cg

]
. (43)

Next, we derive which values of f∧
p and g∧

p are needed in order to compute the values
of f−1

↑,p in If−1
↑,p

and g−1
↑,p in Ig−1

↑,p
. We focus, without loss of generality, on f∧

p , and obtain via
Lemma 18 that

f−1
↑,p (f(Tf)) = sup {t ≥ Tf | f(t) ≤ f(Tf)} = T ′

f ,

and using Theorem 6

f−1
↑,p (f(Tf) + 2 · lcm(cf , cg)) = f−1

↑,p (f(Tf)) + 2 · kcf
· df = T ′

f + 2 · kcf
· df .

Hence, it is sufficient to use
[
T ′

f , T ′
f + 2 · kcf

· df

]
for f−1

↑,p , and
[
T ′

g, T ′
g + 2 · kcg · dg

]
for g−1

↑,p,
to compute f−1

↑,p ⊗ g−1
↑,p. Then, to compute the lower pseudoinverse, we do not require any

additional value from f and g. We do so however for the last step, due to the loss of
information implied by having T ′

f and T ′
g as left boundaries. Using Proposition 25, the

reconstruction operator requires us to know that f(t) = f(Tf) ∀Tf ≤ t ≤ T ′
f , we obtain

I ′
f∧

p
=
[
Tf , T ′

f + 2 · kcf
· df

]
, I ′

g∧
p

=
[
Tg, T ′

g + 2 · kcg · dg

]
. ◀

▶ Theorem 13 (Mix and Match ((min,+) Convolution)). Let f and g ∈ U which are neither
UC nor UI, and are left-continuous and non-decreasing in [Tf , +∞[and [Tg, +∞[, respectively.
Let If∧

p
, Ig∧

p
be the intervals to compute f∧

p ⊗ g∧
p according to (13), and let I ′

f∧
p

, I ′
g∧

p
be the

intervals to compute the same through Corollary 12. Then If∧
p

∩ I ′
f∧

p
, Ig∧

p
∩ I ′

g∧
p

are valid
intervals to compute f∧

p ⊗ g∧
p .

9 The suprema are attainable since the functions are left-continuous over the respective intervals.

ECRTS 2023

12:24 Isospeed: Improving Convolution by Isomorphism

Proof. We prove the result for If∧
p

⊃ I ′
f∧

p
, Ig∧

p
= I ′

g∧
p

, and Thpp as given by (18). The
remaining cases follow by commutativity and / or along the same lines. Let If∧

p
= [Tf , b],

I ′
f∧

p
= [Tf , a] with a < b. Moreover, we define dhpp according to (19). We show now that the

values of f in]a, b] are not necessary for the computation. Therefore, assume that this is not
the case, i.e., there exists some t∗ ∈

[
Tf + Tg, Thpp

+ dhpp

]
, s∗ ∈]a, b] such that

inf
0≤s≤t∗, s/∈]a,b]

{
f∧

p (s) + g∧
p (t∗ − s)

}
> f∧

p ⊗ g∧
p (t∗) = f∧

p (s∗) + g∧
p (t∗ − s∗) =: z∗.

From I ′
f∧

p
= [Tf , a] and Lemma 18 it follows that If−1

↑,p
= [f(Tf), f(a)]. Let us consider now(

f∧
p ⊗ g∧

p

)−1
↑ (z∗) = f−1

↑,p ⊗ g−1
↑,p(z∗). We distinguish two cases: either z∗ ∈ I ⊗−1

p
, computed

according to (41), or it is larger than the upper boundary of I ⊗−1
p

. In the first case, i.e.,
z∗ < f(Tf) + g(Tg) + 2 · lcm(cf , cg), we have

f−1
↑,p ⊗ g−1

↑,p(z∗) = sup
0≤v≤z∗

{
f−1

↑,p (v) + g−1
↑,p(z∗ − v)

}
= f−1

↑,p (v∗) + g−1
↑,p (z∗ − v∗) ,

where v∗ ∈ I ′
f−1

↑,p

= [f(Tf), f(a)] such that the supremum is attained (which exists being the
upper pseudoinverses right-continuous and due to Proposition 22). Moreover, since I ′

f−1
↑,p

and

Ig−1
↑,p

are sufficient to compute f−1
↑,p ⊗ g−1

↑,p(z) for any z ∈ I ⊗−1
p

(Corollary 12), it follows that
v∗ ∈ I ′

f−1
↑,p

and z∗ − v∗ ∈ Ig−1
↑,p

, hence we do not need any value of f and g outside of these
intervals to perform the computation for z∗ in particular. But, since the interval]a, b] was
not used to compute I ′

f−1
↑,p

, this is a contradiction to s∗ ∈]a, b] being needed for f∧
p ⊗ g∧

p .

In the second case (z∗ ≥ f(Tf) + g(Tg) + 2 · lcm(cf , cg)), f−1
↑,p ⊗ g−1

↑,p(z∗) can be computed
by applying the UPP property meaning that

f−1
↑,p ⊗ g−1

↑,p(z∗) = f−1
↑,p ⊗ g−1

↑,p

(
z∗ − k · d ⊗−1

p

)
+ k · c ⊗−1

p

for d ⊗−1
p

and c ⊗−1
p

described in (39) and (40), respectively, and some k ∈ N such that
z∗ − k · d ⊗−1

p
∈ I ⊗−1

p
. We can follow for the latter the same reasoning as in the first

case, thus having again a contradiction to the assumption that s∗ ∈]a, b] is needed for the
computation of f∧

p ⊗ g∧
p . ◀

	1 Introduction
	2 Background and Notation
	2.1 The UPP Model
	2.2 Upper and Lower Pseudoinverses
	2.3 (min,+) and (max,+) Convolution

	3 Improving the Runtime of (min,+) Convolution
	3.1 Alternative Algorithms for (min,+) Convolution
	3.2 Exploiting Isomorphism to Speed up (min,+) Convolution

	4 Performance Evaluation
	5 Conclusions
	A Appendix
	A.1 Preliminary results
	A.2 Proofs of the results in Section 3.2

