Network Calculus Tests — Naming Scheme

Version 2.0 beta2 (2017-Jun-25)

@O0

(©) Steffen Bondorf 2013 - 2017, Some Rights Reserved.

Except where otherwise noted, this work is licensed under Creative Commons
Attribution-ShareAlike 4.0.
See http://creativecommons.org/licenses/by-sa,/4.0/

mailto:bondorf@cs.uni-kl.de
http://creativecommons.org/licenses/by-sa/4.0/

General Information

The network calculus naming scheme presented in this document was created for the purpose of
testing the Disco Deterministic Network Calculator (DiscoDNC)! — an open-source determinis-
tic network calculus tool developed by the Distributed Computer Systems (DISCO) Lab at the
University of Kaiserslautern.

Changelog:
Version 1.1 (2014-Dec-30): Match latest publications.

e Added definition of token-bucket arrival curves Frg and rate-latency Fgy, service curves
to clear up the associated variables.

Renamed the output bound quantifier from * to ’.

Renamed the newly merging cross-traffic function from z’ to .

Changed the explicit path quantifier from s,s,, to (s;, s;).

Added the flow-based path quantifier P (f,).

Added the operators used in the tests.
e Minor fixes in the examples.

Version 2.0 beta2 (2017-Jun-25):
e File Naming Scheme (newly added)
e Variable Nanimg Scheme

— Aggregate of individual flows: changed from braces to square brackets.

Lhttp://disco.cs.uni-kl.de/index.php/projects/disco-dnc

http://disco.cs.uni-kl.de/index.php/projects/disco-dnc
http://disco.cs.uni-kl.de/
http://disco.cs.uni-kl.de/index.php/projects/disco-dnc

File Naming Scheme
NetworkType Servers ServiceCurves Flows ArrivalCurves Paths(_Version) {}
e TopologyType:

— S — (Single) Server

— TA — Tandem of Servers
— TR — (Sink) Tree

— FF — Feed-Forward

e Servers: nS, n € N

e ServiceCurves: mSC, m € N, m <n

e Flows: zF, x € N

e ServiceCurves: yAC,y e N, y <z

e Paths: 2P, z € N, z < z, optional if TopologyType is S
e Version: verv, v € N, optional

e TestType:

— Network — the network topology and the flows
— Test — the expected test results

Examples
e S 1SC_2F 2AC_Network
e S 1SC _1F 1AC Test
e TA 2S5 1SC 2F 1AC 2P Network

TA 3S 1SC 3F 1AC 3P Test
TR _7S_1SC_3F 1AC_3P_Network

e FF 3S 1SC 2F 1AC 2P Network

FF_4S_1SC_4F_1AC_4P_Test

Variable Naming Scheme

semantic_ quantifier

Varlablelocal_quantiﬁer

e variables:

— «: arrival curve
— f: service curve

— a,p € Frp token-bucket arrival curves:
FrB :{'Yr,bz Rt —» Rt |*yr,b (O)Z 0,vd>0: 'yr,b(d): b+r- d}, r,b>0

— Br,r € Fri rate latency service curves:
Frr = {BR7T:R+ —R*|Brr(d) =R- [d—T]+}, T>0,R>0
with R-[d—T])" = [R-(d—T)]* = max{0,R- (d —T)}

— b: burst

— T latency

— r, R: rate (arrival, service)

— B: backlog bound

— D: delay bound

e semantic quantifiers for arrival curves « and its variables (e.g., burst b):

— fn: arrival curve of flow f,

— [fn, -+, fm]: aggregate of arrival curves of flow f,,..., fm

— x (fn): arrival curve of all crossflows of flow f,, (needs local quantification)

— Z (fp): arrival curve of newly joining crossflows of flow f,, (needs local quantification)
— ' output bound (needs local quantification to id service curve)

— no quantifier given: sum of all arrivals (needs local quantification)
e semantic quantifiers for service curves § and its vaiables (e.g., latency T'):

— Lo.fn: left-over for flow f,, (needs local restriction)

* SFA Lo.f,: SFA left-over for flow f, (needs local restriction)
* PMOO Lo.f,: PMOO left-over for flow f, (needs local restriction)

— no quantifier given: unaltered variable (needs local quantification)
e local quantifiers:

— s;: at server s;

— (si,55): on sub-path (see semantic quantifier) between s; and s;:
* o data arrivals on link from s; to s;, i.e., there must be a direct link
% f: convolved service curve on the path from s; to s; (both included)

e2e: end-to-end (only in conjunction with S as well as it’s rate R and latency T')
P (f): on the path of flow f,

Operators
e (min, +)-convolution: ®

e (min, +)-deconvolution: @

non-decreasing, non-negative subtraction: ©

pointwise addition: +
e pointwise subtraction: —

non-negative results: []7 = max {0, -}

Examples

Kso‘ >() s,

(fz)

afo —afo = al

afz —alf2 = (ag‘;)/ = (af2)/

$281

agl(ffz) —afo — (agg)/ — (afo)/

S0S1

agz(fl) = qlf2:fsl = g fatfs = o f2 + afs

s, = a[f17f21f3] — aé‘; + 04{:; + aé‘g _ 23 . aln = Zi:l aln = a£;+f2 + afs = af1+m(f1)

n=

a,, = alr +a§2(f"), n € {1,2,3}

_ f . ’ ’ ’
sy = Olan,sa) + Xonss) + Voasn) = Ugoo0) + Oon 000 T Ugzony = (0f) + (o)) + (o)
’
asgfo) _ (aséfo)> + (as _ ag?éfl)) ((af;z)/) i (ozfl)’
z(fs) _ o fs _ _f _
asd V= 0453 Oésg’ - (<50 33> + <81 S3> + <82753>) a(20783> <31 Ss) + <82753)

o Bloo = (B ©a8T) = (B © (0f)') = (B © (a2 0 5l 7))

5 = Blg @ god @ Bl = (B, ©.li™) ® (B, 0.01) @ (B, & L")

lo.fo _ ﬁlofo _BIOfO ®ﬂlof0

e2e (50,53) (s0,51)

1
B(so,sﬂ = ﬂso ® 651 = ®i:O Bsi
Bp(fs) 6{52,33) = sz © Bsg @ Psy = ®i:{2,0,3} Bs;

